
PoSAT: Proof-of-Work Availability and
Unpredictability, without the Work

Soubhik Deb‡, Sreeram Kannan‡, David Tse?
Email: soubhik@uw.edu, ksreeram@uw.edu, dntse@stanford.edu

‡University of Washington,
?Stanford University

Abstract. An important feature of Proof-of-Work (PoW) blockchains
is full dynamic availability, allowing miners to go online and offline while
requiring only 50% of the online miners to be honest. Existing Proof-
of-stake (PoS), Proof-of-Space and related protocols are able to achieve
this property only partially, either requiring the additional assumption
that adversary nodes are online from the beginning and no new adver-
sary nodes come online afterwards, or use additional trust assumptions
for newly joining nodes. We propose a new PoS protocol PoSAT which
can provably achieve dynamic availability fully without any additional
assumptions. The protocol is based on the longest chain and uses a Ver-
ifiable Delay Function for the block proposal lottery to provide an arrow
of time. The security analysis of the protocol draws on the recently pro-
posed technique of Nakamoto blocks as well as the theory of branching
random walks. An additional feature of PoSAT is the complete unpre-
dictability of who will get to propose a block next, even by the winner
itself. This unpredictability is at the same level of PoW protocols, and
is stronger than that of existing PoS protocols using Verifiable Random
Functions.

1 Introduction

1.1 Dynamic Availability

Nakamoto’s invention of Bitcoin [25] in 2008 brought in the novel concept of a
permissionless Proof-of-Work (PoW) consensus protocol. Following the longest
chain protocol, a block can be proposed and appended to the tip of the blockchain
if the miner is successful in solving the hash puzzle. The Bitcoin protocol has
several interesting features as a consensus protocol. An important one is dy-
namic availability. Bitcoin can handle an uncertain and dynamic varying level of
consensus participation in terms of mining power. Miners can join and leave as
desired without any registration requirement. This is in contrast to most classi-
cal Byzantine Fault Tolerant (BFT) consensus protocols, which assumes a fixed
and known number of consensus nodes. Indeed, Bitcoin has been continuously
available since the beginning, a period over which the hashrate has varied over
a range of 14 orders of magnitude. Bitcoin has been proven to be secure as long

2 Authors Suppressed Due to Excessive Length

as the attacker has less than 50% of the online hash power (the static power
case is considered in [17, 25, 26] and variable hashing power case is considered
in [18,19]).

Recently proof-of-stake (PoS) protocols have emerged as an energy-efficient
alternative to PoW. Instead of solving a difficult hash puzzle, nodes participate
in a lottery to win the right to append a block to the blockchain, with the
probability of winning proportional to a node’s stake in the total pool. This
replaces the resource intense mining process of PoW, while ensuring fair chances
to contribute and claim rewards.

There are broadly two classes of PoS protocols: those derived from classi-
cal BFT protocols and those inspired by Nakamoto’s longest chain protocol.
Attempts at blockchain design via the BFT approach include Algorand [9, 20],
Tendermint [7] and Hotstuff [35]. Motivated and inspired by Nakamoto longest
chain protocol are the PoS designs of Snow White [4] and the Ouroboros family
of protocols [2, 11, 21]. One feature that distinguish the PoS longest chain pro-
tocols from the BFT protocols is that they inherit the dynamic availability of
Bitcoin: the chain always grows regardless of the number of nodes online. But do
these PoS longest chain protocols provide the same level of security guarantee
as PoW Bitcoin in the dynamic setting?

1.2 Static vs Dynamic Adversary

Two particular papers focus on the problem of dynamic availability in PoS pro-
tocols: the sleepy model of consensus [28] and Ouroboros Genesis [2]. In both
papers, it was proved that their protocols are secure if less than 50% of the online
nodes are adversary. This condition is the same as the security guarantee in PoW
Bitcoin, but there is an additional assumption: all adversary nodes are always
online starting from genesis and no new adversary nodes can join. While this
static adversary assumption seems reasonable (why would an adversary go to
sleep?), in reality this can be a very restrictive condition. In the context of Bit-
coin, this assumption would be analogous to the statement that the hash power
of the adversary is fixed in the past decade (while the total hashing power in-
creased 14 orders of magnitude!) More generally, in public blockchains, PoW or
PoS, no node is likely to be adversarial during the launch of a new blockchain
token - adversaries only begin to emerge later during the lifecycle.

The static adversary assumption underlying these PoS protocols is not super-
fluous but is in fact necessary for their security. Suppose for the 1st year of the
existence of the PoS-based blockchain, only 10% of the total stake is online. Out
of this, consider that all nodes are honest. Now, at the beginning of the 2nd year,
all 100% of the stake is online out of which 20% is held by adversary. At any
point of time, the fraction of online stake held by honest nodes is greater than
0.8. However, both Sleepy and Genesis are not secure since the adversary can use
its 20% stake to immediately participate in all past lotteries to win blocks all the
way back to the genesis and then grow a chain instantaneously from the genesis
to surpass the current longest chain (Figure 1(a)). Thus, due to this “costless
simulation”, newly joined adversary nodes not only increase the current online

PoSAT: Proof-of-Work Availability and Unpredictability, without the Work 3

adversary stake, but effectively increase past online adversary stake as well. See
Appendix A.3 for further details on how costless simulation renders both sleepy
model of consensus and Ouroboros Genesis vulnerable to attacks. In contrast,
PoW does not suffer from the same issue because it would take a long time to
grow such a chain from the past and that chain will always be behind the current
longest chain. Thus, PoW provides an arrow of time, meaning nodes cannot “go
back in time” to mine blocks for the times at which they were not online. This
property is key in endowing PoW protocols with the ability to tolerate fully
dynamic adversaries wherein both honest nodes and adversary can have varying
participation (Figure 1(b)).

GENESIS
BLOCK

PROOF OF STAKE PROOF OF WORK

IMMEDIATELY
AFTER

AFTER LONG,
LONG TIME

LEGEND

ADVERSARIAL
BLOCK

Fig. 1: (a) Newly joined nodes in existing PoS protocols can grow a chain from genesis
instantaneously. (b) Newly joined miners in PoW protocol takes a long time to grow
such a chain and is always behind.

We point out that some protocols including Ouroboros Praos [11] and
Snowhite [4] require that nodes discard chains that fork off too much from the
present chain. This feature was introduced to handle nodes with expired stake
(or nodes that can perform key grinding) taking over the longest chain. While
they did not specifically consider the dynamic adversary issue we highlighted,
relying on previous checkpoints can potentially solve the aforementioned secu-
rity threat. However, as was eloquently argued in Ouroboros Genesis [2], these
checkpoints are unavailable to offline clients and newly joining nodes require
advice from a trusted party (or a group inside which a majority is trusted).
This trust assumption is too onerous to satisfy in practice and is not required in
PoW. Ouroboros Genesis was designed to require no trusted joining assumption
while being secure to long-range and key-grinding attacks. However, they are
not secure against dynamic participation by the adversary: they are vulnerable
to the aforementioned attack. This opens the following question:

4 Authors Suppressed Due to Excessive Length

Is there a fully dynamically available PoS protocol which has full PoW secu-
rity guarantee, without additional trust assumptions?

1.3 PoSAT achieves PoW dynamic availability

We answer the aforementioned question in the affirmative. Given that arrow-
of-time is a central property of PoW protocols, we design a new PoS protocol,
PoS with Arrow-of-Time (PoSAT), also having this property using randomness
generated from Verifiable Delay Functions (VDF). VDFs are built on top of
iteratively sequential functions, i.e., functions that are only computable sequen-
tially: f `(x) = f ◦ f ◦ ... ◦ f(x), along with the ability to provide a short and
easily verifiable proof that the computed output is correct. Examples of such
functions include (repeated) squaring in a finite group of unknown order [8,31],
i.e„ f(x) = 2x and (repeated) application of secure hash function (SHA-256) [23],
i.e„ f(x) = Hash(x). While VDFs have been designed as a way for proving the
passage of a certain amount of time (assuming a bounded CPU speed), it has
been recently shown that these functions can also be used to generate an un-
predictable randomness beacon [14]. Thus, running the iteration till the random
time L when RandVDF(x) = fL(x) < τ is within a certain threshold will result
in L being a geometric random variable. We will incorporate this randomized
VDF functionality to create an arrow-of-time in our protocol.

The basic idea of our protocol is to mimic the PoW lottery closely: instead
of using the solution of a Hash puzzle based on the parent block’s hash as
proof of work, we instead use the randomized VDF computed based on the par-
ent block randomness and the coin’s public key as the proof of stake lottery.
In a PoW system, we are required to find a string called "nonce" such that
Hash(block, nonce) < τ , a hash-threshold. Instead in our PoS system, we re-
quire RandVDF(randSource, pk, slot) < τ , where randSource is the random-
ness from the parent block, pk is the public key associated with the mining coin
and slot represents the number of iterations of the RandVDF since genesis.
There are four differences, the first three are common in existing PoS systems:
(1) we use “randSource" instead of “block" in order to prevent grinding attacks
on the content in the PoS system, (2) we use the public-key “pk" of staking coin
instead of PoW “nonce" to simulate a PoS lottery, (3) we use “slot" for ensur-
ing time-ordering, (4) instead of using a Hash, we use the RandVDF, which
requires sequential function evaluation thus creating an “arrow of time".

The first two aspects are common to many PoS protocols and is most similar
to an earlier PoS protocol [15], however, crucially we use the RandVDF function
instead of a Verifiable random function (VRF) and a time parameter inside the
argument used in that protocol. This change allows for full dynamic availability:
if adversaries join late, they cannot produce a costless simulation of the time
that they were not online and build a chain from genesis instantaneously. It
will take the adversary time to grow this chain (due to the sequential nature
of the RandVDF), by which time, the honest chain would have grown and
the adversary will be unable to catch up. Thus, PoSAT behaves more like PoW
(Figure 1(b)) rather than existing PoS based on VRF’s (Figure 1(a)). We show

PoSAT: Proof-of-Work Availability and Unpredictability, without the Work 5

that this protocol achieves full dynamic availability: if λh(t) denotes the honest
stake online at t, λa(t) denotes the online adversarial stake at time t, it is secure
as long as

λh(t) > eλa(t) for all t, (1)

where e is Euler’s number 2.7182
We observe that the security of this protocol requires a stronger condition

than PoW protocols. The reason for this is that an adversary can potentially do
parallel evaluation of VDF on all possible blocks. Since the randomness in each
of the blocks is independent from each other, the adversary has many random
chances to increase the chain growth rate to out-compete the honest tree. This
is a consequence of the nothing-at-stake phenomenon: the same stake can be
used to grind on the many blocks. The factor e is the resulting amplification
factor for the adversary growth rate. This is avoided in PoW protocols due to
the conservation of work inherent in PoW which requires the adversary to split
its total computational power among such blocks.

MINER
START OF

EPOCH

PARENT-
CHILD LINK

RANDOMNESS
SOURCE

FIRST BLOCK
IN EPOCH

START OF
EPOCH

MINER

NEW BLOCK
BEING MINED

NEW BLOCK
BEING MINED

Fig. 2: Left: A node uses randomness from the first block of the epoch. Right: Since a
node already won a block in the period, it uses that block’s randomness.

We solve this problem in PoSAT by reducing the rate at which the block
randomness is updated and hence reducing the block randomness grinding op-
portunities of the adversary. Instead of updating the block randomness at every
level of the blocktree, we only update it once every c levels (called an epoch).
The larger the value of the parameter c, the slower the block randomness is up-
dated. The common source of randomness used to run the VDF lottery remains
the same for c blocks starting from the genesis and is updated only when (a) the
current block to be generated is at a depth that is a multiple of c, or (b) the coin
used for the lottery is successful within the epoch of size c. The latter condition
is necessary to create further independent winning opportunities for the node
within the period c once a slot is obtained with that coin. This is illustrated in
Figure 2. For c = 1, this corresponds to the protocol discussed earlier.

The following security theorem is proved about PoSAT for general c, giving
a condition for security (liveness and persistence) under all possible attacks .
Theorem 1 (Informal). PoSAT with parameter c is secure as long as

λch(t)

1 + λmax∆
> φcλa(t) for all t, (2)

6 Authors Suppressed Due to Excessive Length

where λch(t) is the honest stake this is online at time t and has been online since
at least t−Θ(c), ∆ is the network delay between honest nodes, λmax is a constant
such that λch(t) ≤ λmax for all t > 0, φc is a constant, dependent on c, given in
(21). φ1 = e and φc → 1 as c→∞.

We remark that in our PoS protocol, we have a known upper bound on the
rate of mining blocks (by assuming that the entire stake is online). We can use
this information to set 1 + λmax∆ as close to 1 as desired by simply setting
the mining threshold appropriately. Furthermore, by setting c large, φc ≈ 1
and thus PoSAT can achieve the same security threshold as PoW under full
dynamic availability. The constant φc is the amplification of the adversarial
chain growth rate due to nothing-at-stake, which we calculate using the theory
of branching random walks [32]. The right hand side of (2) can therefore be
interpreted as the growth rate of a private adversary tree with the adversary
mining on every block. Hence, condition (2) can be interpreted as the condition
that the private Nakamoto attack [25] does not succeed. However, Theorem
1 is a security theorem, i.e. it gives a condition under which the protocol is
secure under all possible attacks. Hence what Theorem 1 says is therefore that
among all possible attacks on PoSAT, the private attack is the worst attack. We
prove this by using the technique of blocktree partitioning and Nakamoto blocks,
introduced in [12], which reduce all attacks to a union of private attacks.

We note that large c is beneficial from the point of view of getting a tight
security threshold. However, we do require c to be finite (unlike other protocols
like Ouroboros that continue to work under c being infinite). This is because the
latency to confirm a transaction increases linearly in c (see Section 4). Further-
more, an honest node on coming online has to wait until encountering the next
epoch beginning before it can participate in proposing blocks and the worst-case
waiting time increases linearly with c. We note that the adversary cannot use the
stored blocks in the next epoch, thus having a bounded reserve of blocks. The
total number of blocks stored up by an adversary potentially increases linearly
in the epoch size, thus requiring the confirmation depth and thus latency to be
larger than Θ(c). By carefully bounding this enhanced power of the adversary,
for any finite c, we show that PoSAT is secure.

Assuming λmax∆ to be small and c large, the comparison of PoSAT with other
protocols is shown in Table 1.3. Here we use Λa to be the largest adversary frac-
tion of the total stake online at any time during the execution (Λa = supt λa(t)).
Protocols whose security guarantee assumes all adversary nodes are online all
the time effectively assumes that λh(t) > Λa. Thus existing protocols have lim-
ited dynamic availability (or compromise on the potential to join late without
any trusted setup).

PoSAT: Proof-of-Work Availability and Unpredictability, without the Work 7

Sleepy / Snow White / Genesis Algorand PoSAT
Ourboros Praos

Dynamic λh(t) > Λa λh(t) > Λa λh(t) > Λa No λch(t) > φcλa(t)
Availability

Trusted-set for Yes Yes No NA No
Late-joining
Predictability Global Local Local Local None

1.4 PoSAT has PoW Unpredictability

Another key property of PoW protocols is their ability to be unpredictable: no
node (including itself) can know when a given node will be allowed to propose a
block ahead of the proposal slot. We point out that PoSAT with any parameter
c remains unpredictable due to the the unpredictability of the RandVDF till the
threshold is actually reached. We refer the reader to Fig. 2(a) where if the ran-
domness source is at the beginning of the epoch it is clear that the unpredictabil-
ity of the randomized VDF implies unpredictability in our protocol. However,
in case the miner has already created a block within the epoch (Fig. 2(b)), the
randomness source is now her previous block. This can be thought of as a con-
tinuation of the iterative sequential function from the beginning of the epoch
and hence it is also unpredictable as to when the function value will fall be-
low a threshold. Thus PoSAT achieves true unpredictability, matching the PoW
gold standard, where even an all-knowing adversary has no additional predictive
power.

The first wave of PoS protocols such as Sleepy model of consensus [28] and
Ouroboros [21] are fully predictable as they rely on mechanisms for proposer
election that provide global knowledge of all proposers in an epoch ahead of
time. The concept of Verifiable Random Functions (VRF), developed in [13,24],
was pioneered in the blockchain context in Algorand [9,20], as well as applied in
Ouroboros Praos [11] and Snow White [4]. The use of a private leader election
using VRF enables no one else other than the proposer to know of the slots
when it is allowed to propose blocks. However, unlike Bitcoin, the proposer itself
can predict. Thus, these protocols still allow local predictability. The following
vulnerability is caused by local predictability: a rational node may then willingly
sell out his slot to an adversary. In Ouroboros Praos, such an all-knowing adver-
sary needs to corrupt only 1 user at a time (the proposer) adaptively in order
to do a double-spend attack. He will first let the chain build for some time to
confirm a transaction, and then get the bribed proposers one at a time to build
a competing chain. Algorand is more resilient, but even there, in each step of the
BFT algorithm, a different committee of nodes is selected using a VRF based
sortition algorithm. These nodes are locally predictable as soon as the previous
block is confirmed by the BFT - and thus an all-knowing adversary only needs
to corrupt a third of a committee. Assuming each committee is comprised of K

8 Authors Suppressed Due to Excessive Length

nodes (K being a constant), the adversary only needs to corrupt K
3N fraction of

the nodes. Refer to Appendix A.4 for further details.
We summarize the predictability of various protocols in Table 1.3.

1.5 Related Work

Our design is based on frequent updates of randomness to run the VDF lottery.
PoS protocols that update randomness at each iteration have been utilized in
practice as well as theoretically proposed [15] - they do not use VDF and have
neither dynamic availability nor unpredictability. Furthermore, they still face
nothing-at-stake attacks. In fact, the amplification factor of e we discussed ear-
lier has been first observed in a Nakamoto private attack analysis in [15]. This
analysis was subsequently extended to a full security analysis against all attacks
in [12,33], where it was shown that the private attack is actually the worst attack.
In [33], the idea of c-correlation was introduced to reduce the rate of randomness
update and to reduce the severity of the nothing-at-stake attack; we borrowed
this idea from them in the design of our VDF-based protocol, PoSAT.

There have been attempts to integrate VDF into the proof-of-space paradigm
[10] as well as into the proof-of-stake paradigm [1], [22], all using a VRF concate-
nated with a VDF. But, in [10], the VDF runs for a fixed duration depending
on the input and hence is predictable, and furthermore do not have security
proofs for dynamic availability. In [1], the randomness beacon is not secure till
the threshold of 1/2 as claimed by the authors since it has a randomness grinding
attack which can potentially expand the adverarial power by at least factor e.
There are three shortcomings in [22] as compared to our paper: (1) even under
static participation, they only focus on an attack where an adversary grows a
private chain, (2) there is no modeling of dynamic availablility and a proof of
security and (3) since the protocol focuses only on c = 1, they can only achieve se-
curity till threshold 1/1 + e, not till 1/2. We note that recent work [6] formalized
that a broad class of PoS protocols suffer from either of the two vulnerabilities:
(a) use recent randomness, thus being subject to nothing-at-stake attacks or (b)
use old randomness, thus being subject to prediction based attacks (even when
only locally predictable). We note that PoSAT with large c completely circum-
vents both vulnerabilities using the additional VDF primitive since it is able to
use old randomness while still being fully unpredictable.

We want to point out that dynamic availability is distinct and complementary
to dynamic stake, which implies that the set of participants and their identities in
the mining is changing based on the state of the blockchain. We note that there
has been much existing work addressing issues on the dynamic stake setting -
for example, the s-longest chain rule in [2], whose adaptation to our setting we
leave for future work. We emphasize that the dynamic availability problem is
well posed even in the static stake setting (the total set of stakeholders is fixed
at genesis).

PoSAT: Proof-of-Work Availability and Unpredictability, without the Work 9

1.6 Outline

The rest of the paper is structured as follows. Section 2 presents the VDF primi-
tive we are using and the overall protocol. Section 3 presents the model. Section
4 presents the details of the security analysis.

2 Protocol

2.1 Primitives

In this section, we give an overview of VDFs and refer the reader to detailed
definitions in Appendix B.

Definition 1 (from [5]). A VDF V = (Setup,Eval,Verify) is a triple of
algorithms as follows:

– Setup(λ, τ) → pp = (ek, vk) is a randomized algorithm that produces an
evaluation key ek and a verification key vk.

– Eval(ek, input, τ)→ (O, proof) takes an input ∈ X , an evaluation key ek,
number of steps τ and produces an output O ∈ Y and a (possibly empty)
proof .

– Verify(vk, input,O, proof, τ)→ Y es,No is a deterministic algorithm takes
an input, output, proof, τ and outputs Y es or No.

VDF.Eval is usually comprised of sequential evaluation: f `(x) = f ◦ f ◦
... ◦ f(x) along with the ability to provide a short and easily verifiable proof. In
particular, there are three separate functions VDF.Start, VDF.Iterate and
VDF.Prove (the first function is used to initialize, the second one operates for
the number of steps and the third one furnishes a proof). This is illustrated in
Figure 3a on the left. While VDFs have been designed as a way for proving
the passage of a certain amount of time, it has been recently shown that these
functions can also be used to generate an unpredictable randomness beacon
[14]. Thus, running the iteration till the random time L when RandVDF(x) =
fL(x) < τ generates the randomness beacon. This is our core transformation
to get a randomized VDF. This is shown in Figure 3b on the right. Instead
of running for a fixed number of iterations, we run the VDF iterations till it
reaches a certain threshold. Our transformation is relatively general purpose and
most VDFs can be used with our construction. For example, a VDF (which is
based on squaring in a group of unknown order) is an ideal example for our
construction [29, 34]. In the recent paper [14], for that sequential function, a
new method for obtaining a short proof whose complexity does not depend
(significantly) on the number of rounds is introduced - our protocol can utilize
that VDF as well. They show furthermore that they obtain a continuous VDF
property which implies that partial VDF computation can be continued by a
different party - we do not require this additional power in our protocol.

For the RandVDF in PoSAT, as illustrated in Fig 3b, slot plays a similar
role as the timestamps in other PoS protocols like [28]. The slot basically men-
tions the number of times the RandVDF has iterated since the genesis and when

10 Authors Suppressed Due to Excessive Length

the speed of the iteration of RandVDF is constant, slot is an approximation
to the time elapsed since the beginning of the operation of the PoS system.

Normally, a VDF will satisfy correctness and soundness. And we require
RandVDF to also satisfy correctness and soundness as defined in Appendix B.

VDF.START(𝐢𝐧𝐩𝐮𝐭, 𝒆𝒌, 𝐢𝐧𝐭𝐒𝐭𝐚𝐭𝐞)

VDF.ITERATE(𝑶𝒊"𝟏 , 𝒆𝒌, 𝐢𝐧𝐭𝐒𝐭𝐚𝐭𝐞)

VDF.PROVE(𝑶𝒊 , 𝒆𝒌, 𝐢𝐧𝐭𝐒𝐭𝐚𝐭𝐞)

Is number of iterations < 𝝉?

𝑶𝟎

𝑶𝒊

(𝑶𝒊 , 𝐩𝐫𝐨𝐨𝐟)

(𝐢𝐧𝐩𝐮𝐭, 𝒆𝒌, 𝝉)

𝑶𝒊

No
Yes

(a) VDF.Eval(input, ek, τ)

RANDVDF.START(𝐢𝐧𝐩𝐮𝐭, 𝒆𝒌, 𝐢𝐧𝐭𝐒𝐭𝐚𝐭𝐞)

RANDVDF.ITERATE(𝑶𝒊"𝟏 , 𝒆𝒌, 𝐢𝐧𝐭𝐒𝐭𝐚𝐭𝐞)

RANDVDF.PROVE(𝑶𝒊 , 𝒆𝒌, 𝐢𝐧𝐭𝐒𝐭𝐚𝐭𝐞)

Is HASH(𝑶𝒊 , 𝐬𝐥𝐨𝐭) <THRESHOLD(𝒔)	?

𝑶𝟎

𝑶𝒊

(𝐢𝐧𝐩𝐮𝐭, 𝑶𝒊 , 𝐩𝐫𝐨𝐨𝐟, 𝒊, 𝐬𝐥𝐨𝐭)

(𝐢𝐧𝐩𝐮𝐭, 𝒆𝒌, 𝐬, 𝐬𝐥𝐨𝐭)

𝑶𝒊

No
Yes

𝐬𝐥𝐨𝐭 =
𝐬𝐥𝐨𝐭 + 𝟏

(b) RandVDF.Eval(input, ek, s).

Fig. 3: VDF.Eval(input, ek, τ) requires the number of iterations that VDF.Iterate
should run. On the other hand, RandVDF.Eval(input, ek, s, slot) requires the ex-
pected number of number of iterations RandVDF.Iterate (denoted by s) must run.

A key feature of VDF is that if the VDF takes T steps, then the prover
should be able to complete the proof in time (nearly) proportional to T and the
verifier should be able to verify the proof in (poly)-logarithmic time. This makes
it feasible for any node that receives a block to quickly verify that the VDF
in the header is indeed correctly computed, without expending the same effort
that was expended by the prover. We refer the reader interested in a detailed
analysis of these complexities to Section 6.2 in [29] for the efficiency calculation
or Section 2.3 in [14].

2.2 Protocol description

The pseudocode for the PoSAT is given in Algorithm 1.

PoSAT: Proof-of-Work Availability and Unpredictability, without the Work 11

Algorithm 1 PoSAT
1: procedure Initialize() . all variables are global
2: blkTree← Sync() . syncing with peers
3: unCnfTx← φ . pool of unconfirmed txs
4: parentBlk← blkTree.Tip() . tip of the longest chain in blkTree
5: randSource← None . will be updated at next epoch beginning
6: slot← None . will be updated at next epoch beginning
7: return False
8: procedure PosLeaderElection(coin)
9: (RandVDF.ek, RandVDF.vk),(Sign.vk, Sign.sk) ← coin.Keys()
10: stake← coin.Stake(SearchChainUp(parentBlk)) . update the stake
11: s← UpdateThreshold(stake) . update the threshold
12: input← randSource
13: // Calling RandVDF.Eval
14: (input, output, proof, randIter, slot)← RandVDF.Eval(input, ek, s, slot)
15: randSource← output . update source of randomness
16: state← Hash(parentBlk)
17: content← 〈unCnfTx, coin, input, randSource, proof, randIter, state, slot〉
18: return 〈header, content,Sign(content,Sign.sk)〉
19: procedure ReceiveMessage(X) . receives messages from network
20: if X is a valid tx then
21: unCnfTx← unCnfTx ∪ {X}
22: else if IsValidBlock(X) then
23: if parentBlk.Level() < X.Level() then
24: ChangeMainChain(X) . if the new chain is longer
25: parentBlk← X . update the parent block to tip of the longest chain
26: if X.Level() % c == 0 then
27: randSource← X.content.randSource
28: else
29: randSource← randSource
30: if participate == True then
31: RandVDF.Reset() . reset the RandVDF
32: // Epoch beginning
33: if (X.Level() % c == 0) & (participate == False) then
34: slot← X.content.slot
35: participate = True
36: procedure IsValidBlock(X) . returns true if a block is valid
37: if not IsUnspent(X.content.coin) then return False
38: if ParentBlk(X).content.slot ≥ X.content.slot then
39: return False . ensuring time ordering
40: s← UpdateThreshold(ParentBlk(X))
41: if Hash(X.content.{randSource,slot}) > Threshold(s) then return False
42: // verifying the work
43: return RandVDF.Verify(X.coin.vk, X.content.{input, randSource, proof, randIter})

44: procedure Main() . main function
45: participate = Initialize()
46: StartThread(ReceiveMessage) . parallel thread for receiving messages
47: while True do
48: if participate == True then
49: block = PosLeaderElection(coin)
50: SendMessage(block) . broadcast to the whole network

12 Authors Suppressed Due to Excessive Length

Initialization. An honest coin n on coming online, calls Initialize() where it
obtains the current state of the blockchain, blkTree, by synchronizing with the
peers via Sync() and initializes global variables. However, the coin n can start
participating in the leader election only after encountering the next epoch begin-
ning, that is, when the depth of the blkTree is a multiple of c. This is indicated
by setting participaten to False. Observe that if the coin n is immediately
allowed to participate in leader election, then, the coin n would have to initiate
RandVDF.Eval from the randSource contained in the block at the beginning
of the current epoch. Due to the sequential computation in RandVDF, the
coin n would never be able to participate in the leader elections for proposing
block at the tip of the blockchain. In parallel, the coin keeps receiving messages
and processes them in ReceiveMessage(). On receiving a valid block that in-
dicates epoch beginning, randSourcen, slotn and participaten are updated
accordingly (lines 27, 33, 34) for active participation in leader election.

Leader election. The coin n records the tip of the longest chain of blkTree
in parentBlkn (line 25) and contests leader election for appending block to
it. RandVDF.Eval(inputn,RandVDF.ekn, sn) is used to compute an unpre-
dictable randomness beacon that imparts unpredictability to leader election.
The difficulty parameter sn is set proportional to the current staken of the
coin n using UpdateThreshold(staken) and randSourcen is taken as inputn.
RandVDF.Eval(inputn, ekn, sn, slotn) is an iterative function composed of:

– RandVDF.Start(inputn,RandVDF.ekn, IntStaten) initializes the iter-
ation by setting initial value of outputn to be inputn. Note that IntStaten
is the internal state of the RandVDF.

– RandVDF.Iterate(outputn,RandVDF.ekn, IntStaten) is the iterator
function that updates outputn in each iteration. At the end of each iteration,
it is checked whether Hash(outputn, slotn) is less than Threshold(sn),
which is set proportional to sn. If No, slotn is incremented by 1 and
current outputn is taken as input to the next iteration. If Yes, then it
means coin n has won the leader election and outputn is passed as input
to RandVDF.Prove(.). Observe that the number of iterations, randItern,
that would be required to pass this threshold is unpredictable which lends to
randomness beacon. Recall that slotn is a counter for number of iterations
since genesis. In a PoS protocol, it is normally ensured that the timestamps
contained in each block of a chain are ordered in ascending order. Here, in
PoSAT, instead we ensure that the slot in the blocks of a chain are or-
dered, irrespective of who proposed it. This is referred to as time-ordering.
The reader can refer to Appendix A.5 and A.6 for further details on what
attacks can transpire if time-ordering is not ensured. The rationale behind
setting Threshold(sn) proportional to sn is that even if the stake sn is
sybil over multiple coins, the probability of winning leader election in at
least one coin remains the same. See Appendix A.2 for detailed discussion.

PoSAT: Proof-of-Work Availability and Unpredictability, without the Work 13

– RandVDF.Prove(outputn,RandVDF.ekn, IntStaten) operates on
outputn using RandVDF.ekn and IntStaten to generate proofn that
certifies the iterative computation done in the previous step.

The source of randomness randSourcen can be updated in two ways:

– a block, proposed by another coin, at epoch beginning is received (line 27)
– if coin n wins a leader election and proposes its own block (line 15).

While computing RandVDF.Eval(.), if a block is received that updates
parentBlkn, then, RandVDF.Reset() (line 31) pauses the ongoing computa-
tion, updates sn and continues the computation with updated Threshold(sn).
If randSourcen is also updated, then, RandVDF.Reset() stops the ongoing
computation of RandVDF.Eval(.) and calls PoSLeaderElection().

Content of the block. Once a coin is elected as a leader, all unconfirmed
transactions in its buffer are added to the content. The content also in-
cludes the identity coinn, inputn, randSourcen, proofn, randItern, slotn
from RandVDF.Eval(.). The state variable in the content contains the hash
of parent block, which ensures that the content of the parent block cannot be
altered. Finally, the header and the content is signed with the secure signature
SIGN.skn and the block is proposed. When the block is received by other coins,
they check that the time-ordering is maintained (line 38) and verify the work
done by the coin n using RandVDF.Verify(.) (line 43). Note that the leader
election is independent of the content of the block and content of previous blocks.
This follows a standard practice in existing PoS protocols such as [2] and [28]
for ensuring that a grinding attack based on enumerating the transactions won’t
be possible. The reader is referred to Appendix A.1 for further details. However,
this allows the adversary to create multiple blocks with the same header but
different content. Such copies of a block with the same header but different con-
tents are known as a “forkable string” in [21]. We show in the section 4 that the
PoSAT is secure against all such variations of attacks.

Confirmation rule. A block is confirmed if the block is k−deep from the tip
of the longest chain. The value of k is determined by the security parameter.

3 Model

We will adopt a continuous-time model. Like the∆-synchronous model in [26], we
assume there is a bounded communication delay ∆ seconds between the honest
nodes (the particular value of latency of any transmission inside this bound is
chosen by the adversary).

The blockchain is run on a network of N honest nodes and a set of adver-
sary nodes. Each node holds a certain number of coins (proportional to their
stake). We allow nodes to join and leave the network, thus the amount of hon-
est/adversarial stake which is participating in the protocol varies as a function

14 Authors Suppressed Due to Excessive Length

of time. Recall that, as described in section 2, a coin coming online can only
participate in the leader election after encountering the next epoch beginning.
This incurs a waiting delay for the coin before it can actively participate in the
evolution of the blockchain. Suppose that σ(c) is the worst-case waiting delay,
i.e., it refers to worst-case time. Based on this worst-case waiting delay, let λch(t)
be defined as the stake of the honest coins that are online at time t and has been
online since at least time t − σ(c). Also, let λh(t) is defined as the stake of the
honest coins that are online at time t and has encountered at least one epoch
beginning. Thus, λh(t) is the rate at which honest nodes win leader elections.
Let λa(t) be the stake controlled by the adversary. We assume these functions
are fixed a priori deterministically, and they satisfy

λa(t) ≤ (1− η)λch(t) ∀ t > 0. (3)

where 0 < η < 1. Also, assume there exists constants λmin, λmax > 0 such that

λmin ≤ λch(t) ≤ λmax ∀ t ≥ 0. (4)

The existence of λmax is obvious since we are in a proof-of-stake system,
and λmax denotes the rate at which the leader elections are being won if every
single stakeholder is online. We need to assume a minimum λch(t) in order to
guarantee that within a bounded time, a new block is created. An honest node
will construct and publicly reveal the block immediately after it has won the
corresponding leader election. However, an adversary can choose to not do so.
By “private block", we refer to a block whose corresponding computation of
RandVDF.Eval was completed by the adversary earlier than when the block
was made public. Also, by “honest block proposed at time t", we mean that
the computation of RandVDF.Eval was completed at time t and then the
associated honest block was instantaneously constructed and publicly revealed.

The evolution of the blockchain can be modeled as a process
{(T (t), C(t), T (p)(t), C(p)(t)) : t ≥ 0, 1 ≤ p ≤ N}, N being the number of honest
nodes, where:

– T (t) is a tree, and is interpreted as the mother tree consisting of all the
blocks that are proposed by both the honest and the adversary nodes up
until time t (including private blocks at the adversary).

– T (p)(t) is an induced (public) sub-tree of the mother tree T (t) in the view
of the p-th honest node at time t.

– C(p)(t) is the longest chain in the tree T (p)(t), and is interpreted as the
longest chain in the local view of the p-th honest node.

– C(t) is the common prefix of all the local chains C(p)(t) for 1 ≤ p ≤ N .

The process evolution is as follows.

– M0: T (0) = T (p)(0) = C(p)(0), 1 ≤ p ≤ N is a single root block (genesis).
– M1: There is an independent leader election at every epoch beginning, i.e.,

at every block in the blocktree at level c, 2c, ..., `c, The leader elections
are won by the adversary according to independent Poisson processes of

PoSAT: Proof-of-Work Availability and Unpredictability, without the Work 15

rate λa(t) at time t, one for every block at the aforementioned levels. The
adversary can use the leader election won at a block at level `c at time t to
propose a block at every block in the next c− 1 levels `c, `c+ 1, ..., `c+ c− 1
that are present in the tree T (t). We refer the reader to Figure 4 for a visual
representation.

– M2: Honest blocks are proposed at a total rate of λh(t) at time t across all
the honest nodes at the tip of the chain held by the mining node p, C(p)(t).

– M3: The adversary can replace T (p)(t−) by another sub-tree T (p)(t) from
T (t) as long as the new sub-tree T (p)(t) is an induced sub-tree of the new
tree T (p)(t), and can update C(p)(t−) to a longest chain in T (p)(t). 1

We highlight the capabilities of the adversary in this model:

– A1: Can choose to propose block on multiple blocks of the tree T (t) at any
time.

– A2: Can delay the communication of blocks between the honest nodes, but
no more than ∆ time.

– A3: Can broadcast private blocks at times of its own choosing: when private
blocks are made public at time t to node p, then these blocks are added
to T (p)(t−) to obtain T (p)(t). Note that, under ∆-synchronous model, when
private blocks appear in the view of some honest node p, they will also appear
in the view of all other honest nodes by time t+∆.

– A4: Can switch the chain where the p-th honest node is proposing block,
from one longest chain to another of equal length, even when its view of the
tree does not change, i.e., T (p)(t) = T (p)(t−) but C(p)(t) 6= C(p)(t−).

It is to be noted that we don’t consider the adversary to be adaptive in the
sense that, although adversarial and honest nodes can join or leave the system
as they wish, an adversary can never turn honest nodes adversarial. In order
to defend against an adaptive adversary, key evolving signature schemes can
be used [11]. However, in order to keep the system simple, we don’t consider
adaptive adversary.

Proving the security (persistence and liveness) of the protocol boils down to
providing a guarantee that the chain C(t) converges fast as t → ∞ and that
honest blocks enter regularly into C(t) regardless of the adversary’s strategy.

4 Security Analysis

Our goal is to generate a transaction ledger that satisfies persistence and liveness
as defined in [17]. Together, persistence and liveness guarantee robust transaction
ledger; honest transactions will be adopted to the ledger and be immutable.

Definition 2 (from [17]). A protocol Π maintains a robust public transaction
ledger if it organizes the ledger as a blockchain of transactions and it satisfies
the following two properties:
1 All jump processes are assumed to be right-continuous with left limits, so that
C(t), T (t) etc. include the new arrival if there is a new arrival at time t.

16 Authors Suppressed Due to Excessive Length

𝑷𝒐𝒊(𝝀𝒂(𝒕))

Epoch n Epoch n+2Epoch n + 1 Epoch n+3

𝑷𝒐𝒊(𝝀𝒂(𝒕)) 𝑷𝒐𝒊(𝝀𝒂(𝒕)) 𝑷𝒐𝒊(𝝀𝒂(𝒕))

𝑷𝒐𝒊(𝝀𝒂(𝒕))

Fig. 4: There is a separate randomness generated for every block in the modulo c
position. Blocks generated from that randomness at time t can attach to any block
inside the next c− 1 blocks that are present in the tree T (t).

– (Persistence) Parameterized by τ ∈ R, if at a certain time a transaction tx
appears in a block which is mined more than τ time away from the mining
time of the tip of the main chain of an honest node (such transaction will be
called confirmed), then tx will be confirmed by all honest nodes in the same
position in the ledger.

– (Liveness) Parameterized by u ∈ R, if a transaction tx is received by all
honest nodes for more than time u, then all honest nodes will contain tx in
the same place in the ledger forever.

The theorem below shows that the the private attack threshold yields the
true security threshold:

Theorem 1. If

λch(t)

1 + λmax∆
> φcλa(t) for all t > 0,

then the PoSAT generate transaction ledgers such that each transaction tx satis-
fies persistence (parameterized by τ = ρ) and liveness (parameterized by u = ρ)
in Definition 2 with probability at least 1− e−Ω(ρ1−ε), for any ε > 0.

In order to prove Theorem 1, we utilize the concept of blocktree partitioning
and Nakamoto blocks that were introduced in [12]. We provide a brief overview
of these concepts here.

Let τhi and τai be the time when the i-th honest and adversary blocks are
proposed, respectively; τh0 = 0 is the time when the genesis block is proposed,
which we consider as the 0-th honest block.

Definition 1. Blocktree partitioning Given the mother tree T (t), define for
the i-th honest block bi, the adversary tree Ti(t) to be the sub-tree of the mother

PoSAT: Proof-of-Work Availability and Unpredictability, without the Work 17

tree T (t) rooted at bi and consists of all the adversary blocks that can be reached
from bi without going through another honest block. The mother tree T (t) is
partitioned into sub-trees T0(t), T1(t), . . . Tj(t), where the j-th honest block is
the last honest block that was proposed before time t.

The sub-tree Ti(t) is born at time τhi as a single block bi and then grows each
time an adversary block is appended to a chain of adversary blocks from bi. Let
Di(t) denote the depth of Ti(t); Di(τ

h
i) = 0.

Definition 2. [30] The j-th honest block proposed at time τhj is called a loner if
there are no other honest blocks proposed in the time interval [τhj −∆, τhj +∆].

Definition 3. Given honest block proposal times τhi ’s, define a honest fictitious
tree Th(t) as a tree which evolves as follows:

1. Th(0) is the genesis block.
2. The first honest block to be proposed and all honest blocks within ∆ are all

appended to the genesis block at their respective proposal times to form the
first level.

3. The next honest block to be proposed and all honest blocks proposed within
time ∆ of that are added to form the second level (which first level blocks
are parents to which new blocks is immaterial) .

4. The process repeats.

Let Dh(t) be the depth of Th(t).

Definition 4. (Nakamoto block) Let us define:

Eij = event that Di(t) < Dh(t−∆)−Dh(τhi +∆) for all t > τhj +∆. (5)

The j-th honest block is called a Nakamoto block if it is a loner and

Fj =

j−1⋂
i=0

Eij (6)

occurs.

See Figure 5 in [12] for illustration of the concepts of blocktree partitioning
and Nakamoto blocks.

Lemma 1. (Theorem 3.2 in [12]) (Nakamoto blocks stabilize) If the j-th
honest block is a Nakamoto block, then it will be in the longest chain C(t) for all
t > τhj +∆.

Lemma 1 states that Nakamoto blocks remain in the longest chain forever.
The question is whether they exist and appear frequently regardless of the adver-
sary strategy. If they do, then the protocol has liveness and persistence: honest
transactions can enter the ledger frequently through the Nakamoto blocks, and
once they enter, they remain at a fixed location in the ledger. More formally, we
have the following result.

18 Authors Suppressed Due to Excessive Length

Lemma 2. (Lemma 4.4 in [12]) Define Bs,s+t as the event that there is no

Nakamoto blocks in the time interval [s, s+ t] where t ∼ Ω
([

c−1
φc−1

]2)
. If

P (Bs,s+t) < qt < 1 (7)

for some qt independent of s and the adversary strategy, then the PoSAT gener-
ates transaction ledgers such that each transaction tx satisfies persistence (pa-
rameterized by τ = ρ) and liveness (parameterized by u = ρ) in Definition 2 with
probability at least 1− qρ.

In order to prove Lemma 2, we proceed in five steps as illustrated in Fig. 5.

Simulating a static systemStep 2:

Upgrade the adversary under static systemStep 3:

Analyzing growth rate of adversarial tree using branching random walkStep 4:

Step 5: Analyzing existence of Nakamoto blocks in static system under the upgraded adversary

Step 6: Putting back all together

Step 1: Mining lag of newly joined nodes

Fig. 5: Flowchart of the proof for Lemma 2.

4.1 Step 1: Mining lag of newly joined nodes

From section 3, recall that λh(t) is defined as the stake of the coins that are
online at time t but has encountered at least one epoch beginning. That implies,
within an epoch, λh(t) is the effective honest stake that can be used to contribute
towards the growth of the canonical chain; it remains constant and gets updated
only at the epoch beginning. In order to analyze the effect of this lag in a honest
node to start mining, we simulate a new dynamic available system, dyn2, where,
at time t, an has been online in the original dynamic system since at least time
t− σ(c), where, σ(c) > 0. Recall that λch(t) be defined as the stake of the coins
that are online at time t in the original dynamic system and has been online
since at least t − σ(c). Clearly, λch(t) is the rate at which the honest nodes win
leader election at time t in dyn2. We have the following relationship between the
original dynamic available system and dyn2.

Lemma 3. For the dynamic available system dyn2 and for all s, t > 0, define
Bdyn2s,s+t as the event that there are no Nakamoto blocks in the time interval [s, s+t].

PoSAT: Proof-of-Work Availability and Unpredictability, without the Work 19

Let κ0 be the solution for the equation ln
(
λmax

λmin
(1 + κ)

)
= κ. Then, for σ(c) =

c∆+ c(1+κ)
λmin

and κ >> κ0, we have

P (Bs,s+t) ≤ P (Bdyn2s,s+t) + e−O(κ).

The proof is given in Appendix C.

4.2 Step 2: Simulating a static system

Without loss of generality, we assume that the adversarial power is boosted such
that λa(t) = (1− η)λch(t). Let λh be some positive constant. Taking dyn2 as the
base, we simulate a static system, ss0, where both honest nodes and adversary
win leader elections with constant rates λh and λa = (1 − η)λh, respectively.
This requires, for a local time t > 0 in dyn2, defining a new local time α(t) for
ss0 such that

λch(u)du = λhdα =⇒ α(t) =

∫ t

0

λch(u)

λh
du. (8)

Additionally, for every arrival of an honest or adversarial block in dyn2 at a
particular level at a tree, there is a corresponding arrival in ss0 at the same
level in the same tree. For a time t in the local clock of dyn2, let ∆ss0(t) be the
network delay of dyn2 measured with reference to the local clock of ss0. Using
(8), we have

λmin

λh
∆ ≤ ∆ss0(t) ≤ λmax

λh
∆. (9)

We have the following relationship between dyn2 and ss0.

Lemma 4. Consider the time interval [s, s + t] in the local clock of dyn2. For
the static system ss0, define Bss0α(s),α(s+t) as the event that there are no Nakamoto
blocks in the time interval [α(s), α(s+ t)] in the local clock of ss0. Then,

P (Bdyn2s,s+t) = P (Bss0α(s),α(s+t)).

The proof for this lemma is given in Appendix D.

4.3 Step 3: Upgrading the adversary

As the occurrence of Nakamoto blocks is a race between the fictitious honest
tree and the adversarial trees from the previous honest blocks, we next turn
to an analysis of the growth rate of an adversary tree. However, the growth
rate of an adversarial tree would now depend on the location of the root hon-
est block within an epoch which adds to the complexity of the analysis. To
get around this complexity, we simulate a new static system, ss1 in which the
adversary, on winning a leader election after evaluating RandVDF.Eval and

20 Authors Suppressed Due to Excessive Length

appending a block to an honest block (that is, growing a new adversarial tree),
is given a gift of chain of c − 1 extra blocks for which the adversary doesn’t
have to compute RandVDF.Eval. Thus, the adversary has to compute only
one RandVDF.Eval for the chain of first c blocks in the adversarial tree. At
this point, the adversary can assume a new epoch beginning and accordingly
update randSource. Hereafter, the evolution of randSource follows the rules in
ss0. Note that the local clock for both the static systems ss0 and ss1 are same.
Now, we have the following relationship between ss0 and ss1.

Lemma 5. Consider the time interval [s, s + t] in the local clock of dyn2. For
the static system ss1, define Bss1α(s),α(s+t) as the event that there are no Nakamoto
blocks in the time interval [α(s), α(s+ t)] in the local clock of ss1. Then,

P (Bss0α(s),α(s+t)) ≤ P (Bss1α(s),α(s+t)).

The proof for this lemma is given in Appendix E.
For analyzing P (Bss1α(s),α(s+t)), we first consider an arbitrary static system

ss2 where both honest nodes and adversary win leader elections with constant
rates λh and λa, respectively, the honest nodes follows PoSAT, the adversary has
similar additional power of gift of chain of c−1 blocks as in ss1 but the network
delay is a constant, say ∆′. For some s′, t′ > 0 in the local clock of the static
system ss2, we will determine an upper bound on P (Bss2s′,s′+t′) in Sections 4.4
- 4.5 and then use this result to obtain an upper bound on P (Bss1α(s),α(s+t)) in
Section 4.6.

4.4 Step 4: Growth rate of the adversarial tree

For time t′ > 0, let T̂i(t′) represents the adversarial tree in ss2 with ith honest
block as its root. The depth Di(t

′) at time t′ in the local clock of ss2 is defined as
the maximum depth of the blocks of T̂i(t′) at time t′. In Lemma 6, we evaluate
the tail bound on Di(t

′).

Lemma 6. For x > 0 so that ηcλat′ + x is an integer,

P (Di(t
′) ≥ φcλat′ + cx) ≤ e−θ

∗
c t
′
e(ηcλat

′+x−1)Λc(θ∗c)g(t′). (10)

where φc = cηc, g(t′) =
∑
i1≥1

∫ t′
0

λi1a u
i1−1e−λau

Γ (i1)
eθ
∗
cudu, Λc(θc) =

log(−λca/θc(λa − θc)c−1) and θ∗c is the solution for the equation Λc(θ) = θΛ̇c(θ)

Details on the analysis of T̂i(t′) and the proof of Lemma 6 are in Appendix F.

4.5 Step 5: Existence of Nakamoto blocks

With Lemma 6, we show below that in the static system ss2 in the regime
φcλa <

λh
1+λh∆′

, Nakamoto blocks has a non-zero probability of occurrence.

PoSAT: Proof-of-Work Availability and Unpredictability, without the Work 21

Lemma 7. If

φcλa <
λh

1 + λh∆′
,

then, in the static system ss2, there is a p > 0 such that the probability of the
j−th honest block being a Nakamoto block is greater than p for all j.

The proof of this result can be found in Appendix G.2.
Having established the fact that Nakamoto blocks occurs with non-zero fre-

quency, we can bootstrap on Lemma 7 to get a bound on the probability that
in a time interval [s′, s′ + t′], there are no Nakamoto blocks, i.e. a bound on
P (Bs′,s′+t′).

Lemma 8. If

φcλa <
λh

1 + λh∆′
,

then for any ε > 0, there exist constants āε, Āε so that for all s′ ≥ 0 and t′ >

max

{(
2λh
1−η

)2 (
c−1
φc−1

)2
,
[
(c− 1)

(
∆′ + 1

λmin

)]2}
, we have

P (Bss2s′,s′+t′) ≤ Āε exp(−āεt′1−ε) (11)

where āε is a function of ∆′.

The proof of this result can be found in Appendix G.3.

4.6 Step 6: Putting back all together

In this section, we use the results from Section 4.5 to upper bound P (Bss1α(s),α(s+t))

and hence, P (Bs,s+t).
Using equation 8, we have φcλa(t) <

λch(t)
1+λmax∆

⇐⇒ φcλa <
λh

1+λmax∆
. Then,

we have the following lemma:

Lemma 9. If

φcλa(t) <
λch(t)

1 + λmax∆
,

then for any ε > 0 there exist constants āε, Āε so that for all s ≥ 0 and t >

max

{(
2λh
1−η

)2 (
λh
λmin

)(
c−1
φc−1

)2
,
(

λh
λmin

) [
(c− 1)

(
∆+ 1

λmin

)]2}
, we have

P (Bs,s+t) ≤ Āε exp(−āεt1−ε). (12)

The proof for this result is given in Appendix H. Then, combining Lemma 9
with Lemma 2 implies Theorem 1.

22 Authors Suppressed Due to Excessive Length

5 Discussion

In this section, we discuss some of the practical considerations in adopting
PoSAT.

A key question in PoSAT is what is the right choice of c? If c is low, say
10, then the security threshold is approximately 1.58. At c = 10, the protocol is
fully unpredictable and the confirmation latency is not too high. Also, any newly
joining honest node has to wait for around 10 inter-block arrivals before it can
participate in leader election. Thus, if there is a block arrival every second, then,
the node has to wait for 10 secs. In any standard blockchain, there is always a
bootstrap period for the node to ensure that the state is synchronized with the
existing peers and 10 secs is negligible as compared to the bootstrap period.

In PoSAT, a separate RandVDF needs to be run for each public-key. In a
purely decentralized implementation, all nodes may not have the same rate of
computing VDF. This may disadvantage nodes whose rate of doing sequential
computation is slower. One approach to solve this problem is to build open-
source hardware for VDF - this is already under way through the VDF Alliance.
Even under such a circumstnace, it is to be expected that nodes that can operate
their hardware in idealized circumstances (for example, using specialized cooling
equipment) can gain an advantage. A desirable feature of our protocol is that
gains obtained by a slight advantage in the VDF computation rate are bounded.
For PoSAT, a combination of the VDF computation rate and the stake together
yields the net power weilded by a node, and as long as a majority of such power
is controlled by honest nodes, we can expect the protocol to be safe.

In our PoSAT specification, the difficulty parameter for the computation of
RandVDF.Eval was assumed to be fixed. This threshold was chosen based on
the entire stake being online - this was to ensure that forking even when all
nodes are present remains small, i.e., λmax∆ remained small. In periods when
far fewer nodes are online, this leads to a slowdown in confirmation latency. A
natural way to mitigate this problem is to use a variable mining threshold based
on past history, similar to the adaptation inherent in Bitcoin. A formal analysis
of Bitcoin with variable difficulty was carried out in [18, 19], we leave a similar
analysis of our protocol for future work.

In our protocol statement, we have used the RandVDF directly on the
randomness prevRand and the public key. The RandVDF ensures that any
other node can only predict a given node’s leadership slot at the instant that
it actually wins the VDF lottery. However, this still enables an adversary to
predict the leadership slots of nodes that are offline and can potentially bribe
them to come online to favor the adversary. In order to eliminate this exposure,
we can replace the hash in the mining condition by using a verifiable random
function [13, 24] (which is calculated using the node’s secret key but can be
checked using the public key). This ensures that an adversary which is aware of
all the public state as well as private state of all online nodes (including their
VRF outputs) still cannot predict the leadership slot of any node ahead of the
time at which they can mine the block. This is because, such an adversary does
not have access to the VRF output of the offline nodes.

PoSAT: Proof-of-Work Availability and Unpredictability, without the Work 23

There are two types of PoS protocols: one favoring liveness under dynamic
availability and other favoring safety under asynchrony. BFT protocols fall
into the latter class and lack dynamic availability. One shortcoming of the
longest chain protocol considered in the paper is the reduced throughput and
latency compared to the fundamental limits; this problem is inherited from the
Nakamoto consensus for PoW [25]. However, a recent set of papers address these
problems in PoW (refer Prism [3], OHIE [36] and Ledger Combiners [16]). Adap-
tations of these ideas to the PoSAT protocol is left for future work. Furthermore,
our protocol, like Nakamoto, does not achieve optimal chain quality. Adopting
ideas from PoW protocols with optimal chain quality, such as Fruitchains [27],
is also left for future work.

Finally, while we specified PoSAT in the context of proof-of-stake, the ideas
can apply to other mining modalities - the most natural example is proof-of-
space. We note that existing proof-of-space protocols like Chia [10], use a VDF
for a fixed time, thus making the proof-of-space challenge predictable. In proof-
of-space, if the predictability window is large, it is possible to use slow-storage
mechanisms such as magnetic disks (which are asymmetrically available with
large corporations) to answer the proof-of-space challenges. Our solution of using
a RandVDF can be naturally adapted to this setting, yielding unpredictability
as well as full dynamic availability.

References

1. Azouvi, S., McCorry, P., and Meiklejohn, S. Betting on blockchain consen-
sus with fantomette. arXiv preprint arXiv:1805.06786 (2018).

2. Badertscher, C., Gaži, P., Kiayias, A., Russell, A., and Zikas, V.
Ouroboros genesis: Composable proof-of-stake blockchains with dynamic availabil-
ity. In Proceedings of the 2018 ACM SIGSAC Conference on Computer and Com-
munications Security (2018), ACM, pp. 913–930.

3. Bagaria, V., Dembo, A., Kannan, S., Oh, S., Tse, D., Viswanath, P.,
Wang, X., and Zeitouni, O. Proof-of-stake longest chain protocols: Security vs
predictability. arXiv preprint arXiv:1910.02218 (2019).

4. Bentov, I., Pass, R., and Shi, E. Snow white: Provably secure proofs of stake.
IACR Cryptology ePrint Archive 2016 (2016), 919.

5. Boneh, D., Bonneau, J., Bünz, B., and Fisch, B. Verifiable delay functions.
In Annual international cryptology conference (2018), Springer, pp. 757–788.

6. Brown-Cohen, J., Narayanan, A., Psomas, A., and Weinberg, S. M. For-
mal barriers to longest-chain proof-of-stake protocols. In Proceedings of the 2019
ACM Conference on Economics and Computation (2019), pp. 459–473.

7. Buchman, E., Kwon, J., and Milosevic, Z. The latest gossip on BFT consen-
sus, 2018.

8. Cai, J.-Y., Lipton, R. J., Sedgewick, R., and Yao, A.-C. Towards uncheat-
able benchmarks. In [1993] Proceedings of the Eigth Annual Structure in Complex-
ity Theory Conference (1993), IEEE, pp. 2–11.

9. Chen, J., and Micali, S. Algorand. arXiv preprint arXiv:1607.01341 (2016).
10. Cohen, B., and Pietrzak, K. The chia network blockchain.

https://www.chia.net/assets/ChiaGreenPaper.pdf (2019).

24 Authors Suppressed Due to Excessive Length

11. David, B., Gaži, P., Kiayias, A., and Russell, A. Ouroboros praos: An
adaptively-secure, semi-synchronous proof-of-stake blockchain. In Annual Inter-
national Conference on the Theory and Applications of Cryptographic Techniques
(2018), Springer, pp. 66–98.

12. Dembo, A., Kannan, S., Tas, E. N., Tse, D., Viswanath, P., Wang, X.,
and Zeitouni, O. Everything is a race and nakamoto always wins. ACM CCS,
see also arXiv preprint arXiv:2005.10484 (2020).

13. Dodis, Y., and Yampolskiy, A. A verifiable random function with short proofs
and keys. In International Workshop on Public Key Cryptography (2005), Springer,
pp. 416–431.

14. Ephraim, N., Freitag, C., Komargodski, I., and Pass, R. Continuous ver-
ifiable delay functions. In Annual International Conference on the Theory and
Applications of Cryptographic Techniques (2020), Springer, pp. 125–154.

15. Fan, L., and Zhou, H.-S. A scalable proof-of-stake blockchain in the open setting
(or, how to mimic nakamoto’s design via proof-of-stake), 2018. Cryptology ePrint
Archive, Report 2017/656, Version 20180425:201821.

16. Fitzi, M., Gaži, P., Kiayias, A., and Russell, A. Ledger combiners for fast
settlement. In Theory of Cryptography Conference (2020), Springer, pp. 322–352.

17. Garay, J., Kiayias, A., and Leonardos, N. The bitcoin backbone protocol:
Analysis and applications. In Annual International Conference on the Theory and
Applications of Cryptographic Techniques (2015), Springer, pp. 281–310.

18. Garay, J., Kiayias, A., and Leonardos, N. Full analysis of nakamoto con-
sensus in bounded-delay networks. Cryptology ePrint Archive, Report 2020/277,
2020. https://eprint.iacr.org/2020/277.

19. Garay, J. A., Kiayias, A., and Leonardos, N. The bitcoin backbone protocol
with chains of variable difficulty. Cryptology ePrint Archive, Report 2016/1048,
2016. https://eprint.iacr.org/2016/1048.

20. Gilad, Y., Hemo, R., Micali, S., Vlachos, G., and Zeldovich, N. Algo-
rand: Scaling byzantine agreements for cryptocurrencies. In Proceedings of the 26th
Symposium on Operating Systems Principles (2017), ACM, pp. 51–68.

21. Kiayias, A., Russell, A., David, B., and Oliynykov, R. Ouroboros: A prov-
ably secure proof-of-stake blockchain protocol. In Annual International Cryptology
Conference (2017), Springer, pp. 357–388.

22. Long, J., and Wei, R. Nakamoto consensus with verifiable delay puzzle. arXiv
preprint arXiv:1908.06394 (2019).

23. Mahmoody, M., Moran, T., and Vadhan, S. Publicly verifiable proofs of
sequential work. In Proceedings of the 4th conference on Innovations in Theoretical
Computer Science (2013), pp. 373–388.

24. Micali, S., Rabin, M., and Vadhan, S. Verifiable random functions. In 40th
Annual Symposium on Foundations of Computer Science (Cat. No. 99CB37039)
(1999), IEEE, pp. 120–130.

25. Nakamoto, S. Bitcoin: A peer-to-peer electronic cash system.
26. Pass, R., Seeman, L., and Shelat, A. Analysis of the blockchain protocol in

asynchronous networks. In Annual International Conference on the Theory and
Applications of Cryptographic Techniques (2017).

27. Pass, R., and Shi, E. Fruitchains: A fair blockchain. In Proceedings of the ACM
Symposium on Principles of Distributed Computing (2017), pp. 315–324.

28. Pass, R., and Shi, E. The sleepy model of consensus. In International Conference
on the Theory and Application of Cryptology and Information Security (2017),
Springer, pp. 380–409.

https://eprint.iacr.org/2020/277
https://eprint.iacr.org/2016/1048

PoSAT: Proof-of-Work Availability and Unpredictability, without the Work 25

29. Pietrzak, K. Simple verifiable delay functions. In 10th innovations in theoretical
computer science conference (itcs 2019) (2018), Schloss Dagstuhl-Leibniz-Zentrum
fuer Informatik.

30. Ren, L. Analysis of nakamoto consensus. Tech. rep., Cryptology ePrint Archive,
Report 2019/943.(2019). https://eprint. iacr. org . . . , 2019.

31. Rivest, R. L., Shamir, A., and Wagner, D. A. Time-lock puzzles and timed-
release crypto.

32. Shi, Z. Branching Random Walks, vol. 2151 of Lecture Notes in Mathematics.
Springer Verlag, New York NY, 2015.

33. Wang, X. e. a. Proof-of-stake longest chain protocol revisited. arXiv preprint
arXiv:1910.02218v2 (2018).

34. Wesolowski, B. Efficient verifiable delay functions. Journal of Cryptology (2020),
1–35.

35. Yin, M., Malkhi, D., Reiter, M. K., Gueta, G. G., and Abraham, I.
Hotstuff: Bft consensus in the lens of blockchain. arXiv preprint arXiv:1803.05069
(2018).

36. Yu, H., Nikolic, I., Hou, R., and Saxena, P. Ohie: blockchain scaling made
simple. arXiv preprint arXiv:1811.12628 (2018).

26 Authors Suppressed Due to Excessive Length

Appendix

A Suite of Possible Attacks Under Dynamic Availability

In this section, we describe the suite of possible attacks under dynamic availabil-
ity in PoS systems. This attacks are possible even under static stake. We also
discuss some design recommendations for mitigating against such attacks in PoS
systems.

A.1 Content-grinding attack

Referring to Fig 3b, we note that the content of the block, namely the trans-
actions, were not used in determining whether the Threshold(s) is satisfied
or not. If we instead checked whether Hash(Oi, slot, transactionList) <
Threshold(s) instead of Hash(Oi, slot) < Threshold(s) the protocol loses
security due to the ability of adversary to choose the set of transactions in order
to increase its likelihood of winning the leadership certificate.

In such a case, the adversary can get unlimited advantage by performing
such content-grinding by parallel computation over different sets and orders of
transactions. We note that in PoW the adversary does not gain any advantage
by performing such content grinding, since it is equivalent to grinding on the
Nonce, which is the expected behavior anyway.

A.2 Sybil attack

One natural attack in PoS for an adversary to sybil the stake contained in a single
coin and distribute it across multiple coins which might increase the probability
of winning a leader election from at least one of the coins. We describe next
that having difficulty parameter in RandVDF.Eval proportional to the stake
of the coin defends against such sybil attack. Let us consider H to be the value
of the hash function on the output of VDF in an iteration, R to be range of
this hash function and th be the difficulty parameter that is proportional to
the stake of the coin. Suppose p = P (H < th) = th

R , which is the probability
of winning the leader election in each iteration of the VDF. If we sybil the
stake into , let’s say, three coins with equal stakes, then, the probability of
winning leader election for each individual stake in each iteration of VDF is
P (H < th

3) = th
3R = p

3 . This is due to the fact that difficulty parameter th is
proportional to the stake. Hence, the probability of winning leader election in
each iteration of VDF by at least one coin is 1−

(
1− p

3

)3. However, as the VDFs
are iterating very fast, we are in the regime 0 < p << 1. Thus, by Binomial
series expansion, 1−

(
1− p

3

)3
= 1− (1− 3p3 +O(p2)) = p+O(p2). Hence, this

validates our design choice that difficulty parameter is proportional to the stake
of the coin. This design choice is not unique to our design and is common in all
longest chain based proof-of-stake protocols.

PoSAT: Proof-of-Work Availability and Unpredictability, without the Work 27

A.3 Costless simulation attack

Both sleepy model of consensus [28] and Ouroboros Genesis [2] have a weaker
definition of dynamic availability: all adversary nodes are always online starting
from genesis and no new adversary nodes can join, which makes them vulner-
able to costless simulation attack as described next. In case of sleepy model of
consensus [28], as shown in Fig 6, suppose that in the 1st year of the existence of
the PoS system, only 5% of the total stake, all honest, is online and actively par-
ticipating in evolution of the blockchain. Consider that at the beginning of the
2nd year, all 100% of the stake is online with 20% of the stake being controlled by
the adversary. The adversary can costlessly simulate (with requirement of little

GENESIS
BLOCK

LEGEND

ADVERSARIAL BLOCK

HONEST BLOCK

FOR 𝟏𝒔𝒕 YEAR

5% OF TOTAL
STAKE ONLINE,
NO ADVERSARY

100% OF TOTAL STAKE ONLINE,
20 % HELD BY ADVERSARY

BEGINNING OF 𝟐𝒏𝒅 YEAR

AT THE END OF
𝟏𝒔𝒕 YEAR

IMMEDIATELY AFTER

CANONICAL
PUBLIC
CHAIN

LONGER
PRIVATE

CHAIN

Fig. 6: Costless simulation attack for sleep model of consensus [28].

computational time) the eligibility condition in sleepy protocol across large range
of values of time t, thus, constructing a longer private chain than the canonical
public chain. In sleepy, under the fork-choice rule of choosing the longest chain,
the private chain will be selected as the canonical chain once it is revealed by
the adversary. In case of Ouroboros Genesis [2], as shown in Fig 7, the adversary
can utilize the 20% stake under its control after the slot schange to costlessly
construct a private chain involving leader elections for the slots starting from
the checkpoint slot scheckpoint. Observe that in the slots [scheckpoint, schange] of
the operation of the PoS system, the canonical public chain evolved due to the
participation of only 5% stake. Clearly, with high probability, for any s such
that scheckpoint + s < schange, the private chain has more blocks in the range
[scheckpoint, scheckpoint + s] as compared to canonical public chain. Under the
fork-choice rule of Ouroboros Genesis as described in Fig. 10 of [2], the private
adversarial chain will be selected as the canonical chain when it is revealed.

If the fork-choice rule is to choose the longest chain, the design recommenda-
tion for defending against costless simulation attack is to make it expensive for
the adversary to propose blocks for the past slots and create longer chain. For

28 Authors Suppressed Due to Excessive Length

100% OF TOTAL STAKE ONLINE,
20 % HELD BY ADVERSARY

LEGEND

ADVERSARIAL
BLOCK

HONEST BLOCK

FOR SLOTS IN 	[𝒔𝒄𝒉𝒆𝒄𝒌𝒑𝒐𝒊𝒏𝒕 , 𝒔𝒄𝒉𝒂𝒏𝒈𝒆],
5% OF TOTAL STAKE ONLINE,

NO ADVERSARY

AFTER SLOT 𝒔𝒄𝒉𝒂𝒏𝒈𝒆,

AT SLOT 𝒔𝒄𝒉𝒂𝒏𝒈𝒆

TIME HORIZON𝒔𝒄𝒉𝒆𝒄𝒌𝒑𝒐𝒊𝒏𝒕

MOVING
CHECKPOINT

CANONICAL
PUBLIC CHAIN

𝒔𝒄𝒉𝒆𝒄𝒌𝒑𝒐𝒊𝒏𝒕 + 𝒔 𝒔𝒄𝒉𝒂𝒏𝒈𝒆

PRIVATE
CHAIN

Fig. 7: Costless simulation attack for Ouroboros Genesis [2].

instance, in PoSAT, the adversary would have to initiate its RandVDF from
the first block of the epoch where randSource is updated. Due to the sequential
nature of the computation of RandVDF, with high probability, the adversary
won’t be able to create a private chain longer than the canonical chain.

A.4 Bribery attack due to predictability

A key property of PoW protocols is their ability to be unpredictable: no node
(including itself) can know when a given node will be allowed to propose a block
ahead of the proposal slot. In the existing PoS protocols, there are two notions of
predictability depending on how the leader election winner is decided - globally
predictable and locally predictable. Referring to Fig 8, using hash function for

𝒕𝟏 𝒕𝟐

BRIBING WEBSITE IN
BLACK MARKET:
ADVERTIZE YOUR

CLAIM OF WINNING
LEADER ELECTION IN

SOME SLOT

EPOCH

𝒕𝟑 𝒕𝟒 𝒕𝟓 𝒕𝟔

IDENTITY OF ALL COINS THAT WIN
LEADER ELECTIONS AT SLOTS 𝒕𝟐 ,… , 𝒕𝟖

ARE PUBLICLY COMPUTABLE AT 𝒕𝟏

ADVERSARY CAN NOW BRIBE

GLOBALLY PREDICTABLE

𝒕𝟏 𝒕𝟐

EPOCH

𝒕𝟑 𝒕𝟒 𝒕𝟓 𝒕𝟔

IDENTITY OF ALL COINS THAT WIN
LEADER ELECTIONS AT SLOTS 𝒕𝟐 ,… , 𝒕𝟖
ARE PRIVATELY COMPUTABLE AT 𝒕𝟏

LOCALLY PREDICTABLE

Fig. 8: Variations of bribery attack stemming from predictability.

deciding winner of leader election, as in [28], renders the identity of winners of

PoSAT: Proof-of-Work Availability and Unpredictability, without the Work 29

leader elections in future slots publicly computable. An adversary can now bribe
a coin that is going to propose a block in a future slot to include or exclude a
specific transaction of adversary’s choice or influence the position on where to
append the block. On the other hand, using verifiable random function (VRF)
for deciding winner of leader election, as in Ouroboros Praos [11], Ouroboros
Genesis [2] and Snow White [4], mutes the aforementioned public computability.
However, a node owning a coin can still locally compute the future slots in
which that coin can win the leader election. Now, the node can advertise its
future electability in the black market.

The central idea on how to avoid such predictability is to ensure that a
node owning a coin shouldn’t learn about winning a leader election with that
coin in slot s before the slot s. In PoSAT, owing to randomness of randIter in
RandVDF, the node learns about winning a leader election for that coin in slot
s only after completion of sequential execution of the RandVDF at slot s.

A.5 Private attack by enumerating blocks within an epoch

In PoSAT, at the beginning of each epoch, the randSource is updated. However,

EPOCH OF
LENGTH c= 6

𝑩𝟏 𝑩𝟐 𝑩𝟑 𝑩𝟒 𝑩𝟓 𝑩𝟔

𝑩𝟏 𝑩𝟐 𝑩𝟑 𝑩𝟒 𝑩𝟔 𝑩𝟓

𝑩𝟏 𝑩𝟐 𝑩𝟑 𝑩𝟔 𝑩𝟓 𝑩𝟒

𝑩𝟔 𝑩𝟐 𝑩𝟑 𝑩𝟒 𝑩𝟓 𝑩𝟏

𝑩𝟏 𝑩𝟐 𝑩𝟔 𝑩𝟒 𝑩𝟓 𝑩𝟑

𝑩𝟏 𝑩𝟔 𝑩𝟑 𝑩𝟒 𝑩𝟓 𝑩𝟐

c PRIVATE ADVERSARIAL TREES
BY ENUMERATING c

BLOCKS WITHIN AN EPOCH

CANONICAL PUBLIC
CHAIN

LEGEND

ADVERSARIAL BLOCK

HONEST BLOCK

EPOCH OF
LENGTH c= 6

Fig. 9: Enumerating blocks when time-ordering is not required.

if the appropriate guardrail in the form of time-ordering (line 38 in Algorithm 1)
is not put into place, then, this randSource update can provide statistical ad-
vantage to the adversary in creating longer private chain. To be specific, suppose
that PoSAT doesn’t require the slot in the blocks of a chain to be ordered in
the ascending order. Then, as shown in Fig 9, the adversary can enumerate over
the c blocks in the private adversarial tree to have c different randSource up-
dates for the next epoch. This gives c distinct opportunities to the adversary
to evolve the private adversarial tree which gives the aforementioned statisti-
cal advantage of order c in terms of inter-arrival time of the adversarial blocks.

30 Authors Suppressed Due to Excessive Length

With the guardrail of time-ordering in place, as in PoSAT, the aforementioned
enumeration is not possible as the slot contained in the blocks of a chain are
required to be in ascending order.

A.6 Long-range attack by leveraging randomness update

Updating randSource for a new epoch based on solely the last block of the
previous epoch, as done in PoSAT, gives rise to an unique situation in which an
adversary can mount a long-range attack to create a longer private adversarial
chain. Referring to Fig 10, an adversary, with sufficiently large probability, can
win at least one leader election in each epoch and publicly reveal the block
associated with that leader election after appropriate delay so that the block
ends up as the last block of that epoch. Observe that this strategy will give

EPOCH n OF
LENGTH c= 4

CANONICAL
PUBLIC
CHAIN

LEGEND

ADVERSARIAL BLOCK

HONEST BLOCK

EPOCH n+1 EPOCH m

PRIVATE
ADVERSARIAL

CHAIN

Fig. 10: Illustration of the long-range attack. Consider that m > n.

power to the adversary to dictate the randSource for each epoch. Moreover,
the adversary, on proposing on winning a leader election for an epoch, can just
move on to contesting a leader election for the next epoch. Thus, the adversary
can privately behave as if c = 1 whereas the actual c might be greater than
1. With such a strategy, the adversary can win at least one leader election for
many future epochs and publicly reveal the blocks associated with those leader
elections in a time-appropriate manner. The adversary can continue this strategy
until an appropriate epoch when it is able to win multiple leader elections and
wants to do double spending. There are two design recommendations on how to
protect against this long-range attack:

– requiring time-ordering of the blocks in a chain, as done in PoSAT, would
ensure that even after the adversary behaves as if c = 1 and wins leader
elections for future epochs, the blocks associated with those leader elections
would fail the time-ordering (line 38 in Algorithm 1). This completely re-
moves the aforementioned long-range attack.

– requiring that the randSource for a new epoch is dependent on all the blocks
of the previous epoch. This strategy diminishes the amount of influence that
an adversary can have on the randSource update.

PoSAT: Proof-of-Work Availability and Unpredictability, without the Work 31

B Supplementary for Section 2.1

We give a brief description of VDFs, starting with its definition.

Definition 3 (from [5]). A VDF V = (Setup,Eval, V erify) is a triple of
algorithms as follows:

– Setup(λ, τ)→ pp = (ek, vk) is a randomized algorithm that takes a security
parameter λ and a desired puzzle difficulty t and produces public parameters
pp that consists of an evaluation key ek and a verification key vk. We re-
quire Setup to be polynomial-time in λ. By convention, the public parameters
specify an input space X and an output space Y. We assume that X is effi-
ciently sampleable. Setup might need secret randomness, leading to a scheme
requiring a trusted setup. For meaningful security, the puzzle difficulty τ is
restricted to be sub-exponentially sized in λ.

– Eval(ek, input, τ)→ (O, proof) takes an input ∈ X and produces an output
O ∈ Y and a (possibly empty) proof . Eval may use random bits to generate
the proof but not to compute O. For all pp generated by Setup(λ, τ) and
all input ∈ X , algorithm Eval(ek, input, τ) must run in parallel time τ with
poly(log(τ), λ) processors.

– V erify(vk, input,O, proof) → Y es,No is a deterministic algorithm takes
an input, output and proof and outputs Y es or No. Algorithm Verify must
run in total time polynomial in logτ and λ. Notice that V erify is much
faster than Eval.

The definition for correctness and soundness for RandVDF is defined as
follows:

Definition 4 (Correctness). A RandVDF V is correct if for all λ, τ , pa-
rameters (ek, vk)

$← Setup(λ), and all input ∈ X , if (O, proof)
$←

Eval(ek, input, τ) then Verify(vk, input,O, proof) = Y es.

Definition 5 (Soundness). A RandVDF is sound if for all algorithms A that
run in time O(poly(t, λ))

Pr

[
Verify(vk,input,O,proof)=Y es

O 6=Eval(ek,input,τ)

∣∣∣∣ pp=(ek,vk)
$←Setup(λ)

(input,O,proof)
$←A(λ,pp,τ)

]
≤ negl(λ)

C Proof of Lemma 3

First, we prove the following lemma.

Lemma 10. Define

E1 = {There is no epoch-beginning within the time interval [t− σ(c), t]} (13)

and, let κ0 be the solution for the equation ln
(
λmax

λmin
(1 + κ)

)
= κ. Then, for

σ(c) = c∆+ c(1+κ)
λmin

and κ >> κ0, we have

P (E1) ≤ e−O(κ).

32 Authors Suppressed Due to Excessive Length

Proof. Define Xd, d > 0, as the time it takes for Dh in the original dynamic
available system to reach depth d after reaching depth d − 1. Then, for some
d0 > 0, we have E1 =

{∑d0+c−1
d=d0

Xd > σ(c)
}
. Observe that, due to our blocktree

partitioning, Xd = ∆+ Yd, where Yd is a non-homogeneous exponential random
variable. Therefore, by Chernoff bound, for any v > 0

P

(
d0+c−1∑
d=d0

Xd > σ(c)

)
≤ E

(
ev
∑d0+c−1

d=d0
Xd−vσ(c)

)
= E

(
ev
∑d0+c−1

d=d0
Yd
)
evc∆−vσ(c)

(a)
= evc∆−vσ(c)EYd0 |Xd0−1

evYd0 · · ·EYd0+c−1|Xd0−1···Xd0+c−2
evYd0+c−1

(b)

≤ evc∆−vσ(c)
(

λmax

λmin − v

)c
(c)
= e

−v c(1+κ)λmin

(
λmax

λmin − v

)c

where (a) is due to law of total expectation, (b) is due to the fact that,
if fYd0+i|Xd0−1···Xd0+i−1

(y) is the pdf of Yd0+i given Xd0−1 · · ·Xd0+i−1, then
λmin ≤ λh(t) ≤ λmax implies fYd0+i|Xd0−1···Xd0+i−1

(y) ≤ λmaxe
−λminy, (c) is by

putting σ(c) = c∆+ c(1+κ)
λmin

. Optimizing over v implies that for v = λmin

(
κ

1+κ

)
,

we have

P

(
d0+c−1∑
d=d0

Xd > σ(c)

)
≤ ec

[
−κ+ln

(
λmax
λmin

(1+κ)
)]

Note that for κ >> κ0, we have P
(∑d0+c−1

d=d0
Xd > σ(c)

)
≤ e−O(κ).

Recall that, under the design of simulated system dyn2, if an honest coin has
been online in the original dynamic available system for at least time σ(c), then
the coin can also contribute to the growth of the canonical chain in dyn2. From
Lemma 10, we know that for σ(c) = c∆+ c(1+κ)

λmin
and κ >> κ0, this honest coin

has encountered at least one epoch-beginning in the original dynamic available
system with probability 1−e−O(κ). That implies, with high probability 1−e−O(κ),
at time t, if an honest coin is contributing to the growth of the canonical chain
in dyn2, then it is also contributing to the growth of the canonical chain in
the original dynamical system. However, observe that at the same time t in
the original dynamic available system, there might be other honest coins which
became online after t−σ(c) and have encountered at least one epoch-beginning.
At time t, these coins would contribute to the growth of the canonical chain in
the original dynamic available system but won’t be contributing to the growth
of the canonical chain in dyn2. Thus, λch(t) ≤ λh(t) with probability 1− e−O(κ).
Consequently, P (Bs,s+t) ≤ P (Bdyn2s,s+t) + e−O(κ).

PoSAT: Proof-of-Work Availability and Unpredictability, without the Work 33

D Proof of Lemma 4

Observe that from (8), we have∫ t2

t1

λch(t)dt = λh [α(t2)− α(t1)] (14)

Thus, α(t) is an increasing function in t. Then, we have the following lemma.

Lemma 11. The ordering of events in the dynamic available system dyn2 is
same as in the static system ss0.

Proof. Suppose there are two events E1 and E2 that happen in dyn2 such that
tE1

< tE2
, that is, E1 happen before E2 in dyn2. By contradiction, assume

that E2 happen before E1 in the frame of reference of the static system ss0.
By equation 8, that implies, α(tE2) < α(tE1). However, this contradicts the fact
that α(t) is an increasing function in t.

Suppose that Bs,s+t happens in dyn2. This implies that, in dyn2, for every
honest block bj proposed at τhj ∈ [s, s + t], there exists some minimum time
t0 > τhj +∆ and some honest block bi proposed at τhi such that

Di(t0) ≥ Dh(t0 −∆)−Dh(τhi +∆).

Due to Lemma 11, events in the evolution of the blockchain in dyn2 during the
interval [τhi , t0] happens in the same order in the static system ss0 during the
time interval [α(τhi), α(t0)]. That implies the depth of the fictitious honest tree
at time t in the local clock of dyn2 is same as the depth of the same fictitious
honest tree at time α(t) in the local clock of ss0. This equivalence also carries
over for the adversarial trees. Then, analysing the race between the fictitious
honest tree Th(t) and the adversarial tree Ti(t) with respect to the local clock of
ss0, we can write

Di(α(t0)) ≥ Dh(α(t0 −∆))−Dh(α(τhi +∆))

That implies bj is not a Nakamoto block in the static system ss0 too. Since, bj
is any arbitrary honest block with τhj ∈ [s, s + t], therefore this is true for all
honest blocks j′ with τhj′ ∈ {s, s+ t}. Hence, Bdyn2s,s+t = Bss0α(s),α(s+t) which implies
P (Bdyn2s,s+t) = P (Bss0α(s),α(s+t)). This concludes our lemma.

E Proof of Lemma 5

For simulating the static system ss1, keep the sample path of the progress of
the fictitious honest tree in both static systems ss0 and ss1 same. For some
t > 0 in the local clock of dyn2, let Ti(t) represent the adversarial tree in ss0
with bi as its root. Suppose Bss0α(s),α(s+t) happens in ss0 for some s, t > 0 defined
in the local clock of dyn2. That implies, for every honest block bj proposed at

34 Authors Suppressed Due to Excessive Length

α(τhj) ∈ [α(s), α(s+ t)], there exists some minimum time α(t0) > α(τhj +∆) and
some honest block bi proposed at α(τhi) such that

Di(α(t0)) ≥ Dh(α(t0 −∆))−Dh(α(τhi +∆)).

Now, for any arbitrary bj , there are two cases:

1. If the tip of the fictitious honest tree at time α(t0−∆) is in the same epoch
as the honest block bi, then, the adversary can duplicate the first block in
the adversarial tree Ti(t) of the static system ss0 and attach it to the block
bi of the simulated system ss1. However, in ss1, the adversary immediately
gets a gift of c− 1 blocks.

2. If the fictitious honest tree at time α(t0 −∆) is in a different epoch as the
honest block bi, then, the adversary can duplicate the Ti(t) and prune it to
contain all the blocks starting from the epoch that comes immediately after
the epoch containing bi in Ti(t). Then, in ss1, the adversary duplicates the
first block in the adversarial tree Ti(t) of the static system ss0 and attaches
it to the block bi of the simulated system ss1 that immediately gifts a chain
of c−1 blocks. The adversary then appends over that chain the pruned Ti(t).

Both cases clearly imply that at time α(t0), there is an adversarial tree on bi in
ss1 whose depth is greater than Ti(t0) in ss0. Thus, bj is not a Nakamoto block
in ss1. Hence, P (Bss0α(s),α(s+t)) ≤ P (Bss1α(s),α(s+t)).

F Growth rate of Adversarial Tree T̂i(t)

We first give a description of the (dual of the) adversarial tree consisting of
super-blocks in terms of a Branching Random Walk (BRW).

Observe that due to the assumption on adversary in ss2, each adversarial
tree T̂i(t′) (with ith honest block as its root), when analysed in the local clock
of ss2, grows statistically in the same way, without any dependence on the level
of the root. Without loss of generality, let us focus on the adversary tree T̂0(t′),
rooted at genesis. The genesis block is always at depth 0 and hence T̂0(0) has
depth zero.

We can transform the tree T̂0(t′) into a new random tree T̂ s0 (t′). Every c
generations in T̂0(t′) can be viewed as a single generation in T̂ s0 (t′). Thus, every
block in T̂ s0 (t′), termed as superblocks, is representative of c blocks in T̂0(t′).
Consider B0 to be the root of T̂ s0 (t′). The children blocks of B0 in T̂ s0 (t′) are
the descendent blocks at level c in T̂0(t′). We can order these children blocks
of B0 in terms of their arrival times. Then, as the blocks in first c − 1 levels of
T̂0(t′) are gift, the adversary didn’t have to compute RandVDF.Eval for these
blocks. Consider block B1 to be the first block for which RandVDF.Eval was
computed by the adversary. Therefore, the arrival time Q1 of block B1 is given
by X1 where X1 is an exponential random variable in the static system ss2. On
the other hand, the arrival time of the first child of B1, call it B1,1, is given by
Q1,1 = Q1 + X1,1 + · · · + X1,c, where X1,i is the inter-arrival time between the

PoSAT: Proof-of-Work Availability and Unpredictability, without the Work 35

(i− 1)th and ith descendent block of B1. Note that, in the static system ss2, all
the X1,i’s are exponential with parameter λa, and they all are independent. Let
the depth of the tree T̂ s0 (t′) be Ds

0(t′).
Each vertices at generation k ≥ 2 in T̂ s0 (t′) can be labelled as a k tuple

of positive integers (i1, . . . , ik) with ij ≥ c for 2 ≤ j ≤ k: the vertex v =
(i1, . . . , ik) ∈ Ik is the (ik − c+ 1)-th child of vertex (i1, . . . , ik−1) at level k− 1.
At k = 1 generation, we have i1 ≥ 1 as the adversary is gifted c − 1 blocks
on proposing the first block for which it computes only one RandVDF.Eval.
Let Ik = {(i1, . . . , ik) : ij ≥ 1 for ij = 1 and ij ≥ c for 2 ≤ j ≤ k}, and set
I = ∪k>0Ik. For such v we also let vj = (i1, . . . , ij), j = 1, . . . , k, denote the
ancestor of v at level j, with vk = v. For notation convenience, we set v0 = 0 as
the root of the tree.

Next, let {Ev}v∈I be an i.i.d. family of exponential random variables of pa-
rameter λa. For v = (i1, . . . , ik) ∈ Ik, let Wv =

∑
j≤ik E(i1,...,ik−1,j) and let

Qv =
∑
j≤kWvj . This creates a labelled tree, with the following interpretation:

for v = (i1, . . . , ij), theWvj are the waiting time for vj to appear, measured from
the appearance of vj−1, and Qv is the appearance time of v. Observe that start-
ing from any v ∈ I1, we obtain a standard BRW. For any v = (i1, · · · , ik) ∈ Ik,
we can write Qv = Q1

v + Q2
v where Q1

v is the appearance time for the ancestor
of v at level 1 while Q2

v = Qv −Q1
v.

Let Q∗k = minv∈Ik Qv. Note that Q∗k is the time of appearance of a block at
level k and therefore we have

{D0(t′) ≥ ck} = {Ds
0(t′) ≥ k} = {Q∗k ≤ t′}. (15)

Fixing i1 ∈ I1, let Q2∗
k,i1

= minv∈Ik s.t. v1=i1 Q
2
v. Observe that Q2∗

k,i1
is the min-

imum of a standard BRW with its root at the vertex i1. Introduce, for θc < 0,
the moment generating function

Λc(θc) = log
∑
v∈I2
v1=i1

E(eθcQ
2
v) = log

∞∑
j=c

E(e
∑j
i=1 θcEi)

= log

∞∑
j=c

(E(eθcE1))j = log
Ec(eθcE1)

1− E(eθcE1)
.

Due to the exponential law of E1, E(eθcE1) = λa
λa−θc and therefore Λc(θc) =

log(−λca/θc(λa − θc)c−1).
An important role is played by θ∗c , which is the negative solution to the

equation Λc(θc) = θcΛ̇c(θc) and let ηc satisfy that

sup
θc<0

(
Λc(θc)

θc

)
=
Λc(θ

∗
c)

θ∗c
=

1

λaηc
.

Indeed, we have the following.

36 Authors Suppressed Due to Excessive Length

Proposition 1.

lim
k→∞

Q∗k
k

= lim
k→∞

Q2∗
k,i1

k
= sup
θc<0

(
Λc(θc)

θc

)
=

1

λaηc
, a.s.

In fact, much more is known.

Proposition 2. There exist explicit constants c1 > c2 > 0 so that the sequence
Q∗k − k/λaηc − c1 log k is tight, and

lim inf
k→∞

Q∗k − k/λaηc − c2 log k =∞, a.s.

Note that Propositions 1,2 and (15) imply in particular that D0(t′) ≤ cηcλat′
for all large t′, a.s., and also that

if cηcλa > λh then Di(t
′) > t′ for all large t′, a.s.. (16)

Let us define φc := cηc, then φcλa is the growth rate of private c-correlated
NaS tree. With all these preparations, we can give a simple proof for Lemma 6.

Proof. Consider m = ηcλat
′ + x. Note that by (15),

P (Ds
0(t′) ≥ m) = P (Q∗m ≤ t′) ≤

∑
v∈Im

P (Qv ≤ t′) =
∑
v∈Im

P (Q1
v +Q2

v ≤ t′)

=
∑
v∈Im

∫ t′

0

pQ1
v
(u)P (Q2

v ≤ t′ − u)du

=
∑
i1≥1

∑
i2≥c,...,im≥c

∫ t′

0

pQ1
v
(u)P (Q2

v ≤ t′ − u)du (17)

For v = (i1, . . . , ik), set |v−1| = i2 + · · · + ik. Then, we have that Q2
v has the

same law as
∑|v−1|
j=1 Ej . Thus, by Chebycheff’s inequality, for v ∈ Im,

P (Q2
v ≤ t′ − u) ≤ Eeθ

∗
cQ

2
ve−θ

∗
c (t
′−u) =

(
λa

λa − θ∗c

)|v−1|

e−θ
∗
c (t
′−u). (18)

And

∑
i2≥c,...,im≥c

(
λa

λa − θ∗c

)|v−1|

=
∑

i2≥c,...,im≥c

(
λa

λa − θ∗c

)∑m
j=2 ij

=

∑
i≥c

(
λa

λa − θ∗c

)im−1

= e(m−1)Λc(θ
∗
c). (19)

PoSAT: Proof-of-Work Availability and Unpredictability, without the Work 37

Combining (18), (19) and (17) yields

P (Ds
0(t′) ≥ m) ≤ e−θ

∗
c t
′
e(m−1)Λc(θ

∗
c)
∑
i1≥1

∫ t′

0

pQ1
v
(u)eθ

∗
cudu

= e−θ
∗
c t
′
e(m−1)Λc(θ

∗
c)
∑
i1≥1

∫ t′

0

λi1a u
i1−1e−λau

Γ (i1)
eθ
∗
cudu

= e−θ
∗
c t
′
e(m−1)Λc(θ

∗
c)g(t′). (20)

where g(t′) =
∑
i1≥1

∫ t′
0

λi1a u
i1−1e−λau

Γ (i1)
eθ
∗
cudu.

From proposition 1, we have

φc =
cθ∗c
λa

 1

log
(

−λca
θ∗c (λa−θ∗c)c−1

)
 , (21)

where θ∗c is the unique negative solution of

Λc(θc) = θcΛ̇c(θc) (22)

Note that g(t′) is an increasing function on t′ and

lim
t′→∞

g(t′) =
∑
i1≥1

(
λa

λa − θ?c

)i1
=

λa
−θ?c

(23)

G Proofs

G.1 Definitions and Preliminary Lemmas

In this section, we define some important events which will appear frequently in
the analysis and provide some useful lemmas.

Let Vj be the event that the j−th honest block bj is a loner, i.e.,

Vj = {τhj−1 < τhj −∆′}
⋂
{τhj+1 > τhj +∆′}

Let F̂j = Vj
⋂
Fj be the event that bj is a Nakamoto block. Then, we can define

the following “potential" catch up event in ss2:

B̂ik = {Di(τ
h
k +∆′) ≥ Dh(τhk−1)−Dh(τhi +∆′)}, (24)

which is the event that the adversary launches a private attack starting from
honest block bi and catches up the fictitious honest chain right before honest
block bk is mined.

38 Authors Suppressed Due to Excessive Length

Lemma 12. For each j,

P (F̂ cj) = P (F cj ∪ V cj) ≤ P

 ⋃
(i,k):0≤i<j<k

B̂ik

 ∪ V cj
 . (25)

Proof.

P (Vj ∩ Eij)
= P (Vj ∩ {Di(t

′) < Dh(t′ −∆′)−Dh(τhi +∆′) for all t′ > τhj +∆′})

= P (Vj ∩ {Di(t
′ +∆′) < Dh(t′)−Dh(τhi +∆′) for all t′ > τhj })

= P (Vj ∩ {Di(τ
h
k

−
+∆′) < Dh(τhk

−
)−Dh(τhi +∆′) for all k > j})

= P (Vj ∩ {Di(τ
h
k +∆′) < Dh(τhk−1)−Dh(τhi +∆′) for all k > j}).

Since F̂j = Fj ∩ Vj =
⋂

0≤i<j Eij ∩ Vj , by the definition of B̂ik we have

P (F̂j) ≥ P
((⋂

(i,k):0≤i<j<k B̂
c
ik

)
∩ Vj

)
. Taking complement on both side, we

can conclude the proof.

Let Rm = τhm+1 − τhm. Then, Vj and B̂ik can be re-written as:

Vj = {∆′ < Rj−1}
⋂
{Rj > ∆′} (26)

B̂ik =

{
Di(τ

h
i +

k−1∑
m=i

Rm +∆′) ≥ Dh(τhk−1)−Dh(τhi +∆′)

}

Remark 1. By time-warping, Rm is an IID exponential random variable with
rate λh.

Define Xd, d > 0, as the time it takes in the local clock of static system ss2
for Dh to reach depth d after reaching depth d − 1. In other words, Xd is the
difference between the times t1 and t2, where t1 is the minimum time t′ in the
local clock of ss2 such that Dh(t′) = d, and, t2 is the minimum time t′ in the
local clock of ss2 such that Dh(t′) = d− 1.

Also, let δhj = τhj − τhj−1 and δaj = τaj − τaj−1 denote the inter-arrival time
for honest and adversary arrival events in the local clock of static system ss2,
respectively.

Proposition 3. Let Yd, d ≥ 1, be i.i.d random variables, exponentially dis-
tributed with rate λh. Then, each random variable Xd can be expressed as ∆′+Yd.

See Proposition C.1 in [12] for the proof.

Proposition 4. For any constant a,

P (

n+a∑
d=a

Xd > n(∆′ +
1

λh
)(1 + δ)) ≤ e−nΩ(δ2(1+∆′λh)

2)

PoSAT: Proof-of-Work Availability and Unpredictability, without the Work 39

Proposition 4 is proved using chernoff bound and Proposition 3.

Proposition 5. Probability that there are less than

n
λa(1− δ)

λh

adversarial arrival events for which RandVDF.Eval has been computed in the
interval τh0 to τhn+1 is upper bounded by

e
−nΩ(δ2 λaλh

)

Proposition 5 is proven using the Poisson tail bounds.

Proposition 6. For n > c−1
φc−1 , define Bn as the event that there are

at least n adversarial block arrivals for each of which adversary computed
RandVDF.Eval while Dh grows from depth 0 to n+ c− 1:

Bn = {
n+c−1∑
i=1

Xi ≥
n∑
i=0

δai }

If

φcλa <
λh

1 + λh∆′
,

then,
P (Bn) ≤ e−A1ne−A2

,

A1 = −w∆′ + ln

(
λa + w

λa

)
+ ln

(
λh − w
λh

)
A2 = −(c− 1)w∆′ + (c− 1) ln

(
λh − w
λh

)
such that A1 + A2

n > 0 and,

w =
λh − λa

2
+

2n+ c− 1

2(n+ c− 1)∆′
−√

[(n+ c− 1)∆′(λa − λh)]2 + (2n+ c− 1)2 + 2(n+ c− 1)∆′[(c− 1)(λa + λh) + 2(n+ c− 1)∆′λaλh]

2(n+ c− 1)∆′

Proof. Using Chebychev inequality and proposition 3, for any t > 0, we have

P (Bn) ≤ E

 n∏
j=0

e−wδ
a
i

E
n+c−1∏

j=1

ewXi


≤
[

λa
λa + w

]n [
ew∆

′
λh

λh − w

]n+c−1
= e
−n
[
−(n+c−1

n)w∆′+(n+c−1
n) ln

(
λh−w
λh

)
+ln (λa+w

λa
)
]

40 Authors Suppressed Due to Excessive Length

Optimizing over w, we have

d

dw

[
−
(
n+ c− 1

n

)
w∆′ +

(
n+ c− 1

n

)
ln

(
λh − w
λh

)
+ ln

(
λa + w

λa

)]
= 0

(n+ c− 1)∆′w2 + [(n+ c− 1)∆′(λa − λh)− (2n+ c− 1)]w

+ [nλh − (n+ c− 1)λa − (n+ c− 1)∆′λaλh] = 0

w =
λh − λa

2
+

2n+ c− 1

2(n+ c− 1)∆′
−√

[(n+ c− 1)∆′(λa − λh)]2 + (2n+ c− 1)2 + 2(n+ c− 1)∆′[(c− 1)(λa + λh) + 2(n+ c− 1)∆′λaλh]

2(n+ c− 1)∆′

Note that for n > c−1
φc−1 , we have λa

(
1 + c−1

n

)
< φcλh <

λh
1+∆′λh

. That implies
w > 0.

Also, using n > c−1
φc−1 , we have

−
(
n+ c− 1

n

)
w∆′ +

(
n+ c− 1

n

)
ln

(
λh − w
λh

)
+ ln

(
λa + w

λa

)
= A1 +

A2

n
> 0

Lemma 13. For k − i > λh(c−1)
λa(φc−1) , there exists a constant γ > 0 such that

P (B̂ik) ≤ e−γ(k−i) (27)

Proof. Let N(τhi , τ
h
k + ∆′) be the number of adversarial arrivals for which

RandVDF.Eval in was computed in ss2 in the interval [τhi , τ
h
k +∆′]. Define

Ĉik = event that N(τhi , τ
h
k +∆′) + (c− 1) ≥ Dh(τhk−1)−Dh(τhi +∆′)

Observe that Di(τ
h
i , τ

h
k +∆′) ≤ N(τhi , τ

h
k +∆′)+(c−1), where c−1 is due to the

fact that blocks in first c− 1 levels are gifted to the adversary on proposing the
first block in the adversarial tree. Note that RandVDF.Eval was not computed
by the adversary for these c− 1 blocks. Then, we have

B̂ik ⊆ Ĉik.

PoSAT: Proof-of-Work Availability and Unpredictability, without the Work 41

P (B̂ik) ≤ P

(
N(τhi , τ

h
k +∆′) < (1− δ)(k − i)λa

λh

)
+ P

(
Ĉik | N(τhi , τ

h
k +∆′) ≥ (1− δ)(k − i)λa

λh

)
(a)

≤ e−Ω((k−i)δ2λa/λh) + P

(
Ĉik | Na(τhi , τ

h
k +∆′) ≥ (1− δ)(k − i)λa

λh

)
(b)

≤ e−Ω((k−i)δ2λa/λh) +
∞∑

x=(1−δ)(k−i) λaλh

P
(
Dh(τhk−1)−Dh(τhi +∆′) ≤ x+ c− 1 | Na(τhi , τ

h
k +∆′) = x

)
(c)
= e−Ω((k−i)δ2λa/λh) +

∞∑
x=(1−δ)(k−i) λaλh

e−A1xe−A2

(d)
= e−Ω((k−i)δ2λa/λh) + e−A2

1

1− e−A3
e−A3(k−i)

where (a) is due to proposition 5 which says that there are more than (1−δ)(k−
i)λa/λh adversarial arrival events in the time period [τhi , τ

h
k + ∆′] except with

probability e−Ω((k−i)δ2λa/λh), (b) is by union bound, (c) is by proposition 6 for
k − i > λh(c−1)

λa(φc−1) , (d) is due to A3 = A1(1−δ)λa
λh

.
Hence,

P (B̂ik) < C1e
−C2(k−i) (28)

for appropriately chosen constants C1, C2, > 0 as functions of the fixed δ. Finally,
since P (B̂ik) decreases as k− i grows and is smaller than 1 for sufficiently large
k − i, we obtain the desired inequality for a sufficiently small γ ≤ C3.

G.2 Proof of Lemma 7

For notational convenience, we will continue to use τhi and τai as the arrival time
of the i− th honest and adversarial blocks in the static system ss2, respectively.
In this proof, let rh := λh

1+λh∆′
. The random processes of interest start from

time 0. To look at the system in stationarity, let us extend them to −∞ < t′ <
∞. More specifically, define τh−1, τh−2, . . . such that together with τh0 , τh1 , . . ., we
have a double-sided infinite random process. Also, for each i < 0, we define an
independent copy of a random adversary tree T̂i with the same distribution as
T̂0. And we extend the definition of T̂h(t′) and Dh(t′) to t′ < 0: the last honest
block mined at τh−1 < 0 and all honest blocks mined within (τh−1 − ∆′, τh−1)

appear in T̂h(t′) at their respective mining times to form the level −1, and the
process repeats for level less than −1; let Dh(t′) be the level of the last honest
arrival before t′ in T̂h(t′), i.e., Dh(t′) = ` if τhi ≤ t′ < τhi+1 and the i-th honest
block appears at level ` of T̂h(t).

42 Authors Suppressed Due to Excessive Length

These extensions allow us to extend the definition of Eij to all i, j, −∞ <

i < j <∞, and define Ej and Êj to be:

Ej =
⋂
i<j

Eij

and
Êj = Ej ∩ Vj .

Note that Êj ⊂ F̂j , so to prove that F̂j has a probability bounded away from
0 for all j, all we need is to prove that Êj has a non-zero probability.

Recall that we have defined the events Vj and B̂ik in section G.1 of the
appendix as:

Vj = {∆′ < Rj−1}
⋂
{Rj > ∆′}

B̂ik =

{
Di(τ

h
i +

k−1∑
m=i

Rm +∆′) ≥ Dh(τhk−1)−Dh(τhi +∆′)

}

where Rm are i.i.d exponential random variable with mean 1
λh

.
Following the idea in Lemma 12 and using Lemma 14 and 15, we have

P (Ej ∩ Vj) = P

⋂
i<j

Eij ∩ Vj

 = P

 ⋂
i<j<k

B̂cik

 ∩ Uj
 .

where Ej =
⋂
i<j<k B̂

c
ik and Êj = Ej ∩ Uj . So, we just need to prove that Êj

has a non-zero probability. Observe that, due to constant adversarial and honest
mining rate and the growth rate of the adversarial tree being independent of
level of its root in the static system ss2, Êj has a time-invariant dependence
on {Zi}, which means that p = P (Êj) does not depend on j. Then we can just
focus on P (Ê0). This is the last step to prove.

P (Ê0) = P (E0|U0)P (U0)

= P (E0|U0)P (R0 > ∆′)P (R−1 > ∆′)

= e−2λh∆
′
P (E0|U0).

where we used Remark 1 in the last step. It remains to show that P (E0|U0) > 0.
We have

E0 = event that Di(

k−1∑
m=i

Rm +∆′ + τhi) < Dh(τhk−1)−Dh(τhi +∆′)

for all k > 0 and i < 0,

then
(E0)c =

⋃
k>0,i<0

B̂ik. (29)

PoSAT: Proof-of-Work Availability and Unpredictability, without the Work 43

Let us fix a particular n > 2λh∆
′ > 0, and define:

Gn = event thatDm(3n/λh + ζhm) = 0

for m = −n,−n+ 1, . . . ,−1, 0,+1, . . . , n− 1, n

Then

P (E0|U0) ≥ P (E0|U0, Gn)P (Gn|U0)

=
(

1− P (∪k>0,i<0B̂ik|U0, Gn)
)
P (Gn|U0)

≥

1−
∑

k>0,i<0

P (B̂ik|U0, Gn)

P (Gn|U0)

≥ (1− an − bn)P (Gn|U0) (30)

where

an :=
∑

(i,k):−n≤i<0<k≤n

P (B̂ik|U0, Gn) (31)

bn :=
∑

(i,k):i<−n or k>n

P (B̂ik|U0, Gn). (32)

Consider two cases:
Case 1: −n ≤ i < 0 < k ≤ n:

P (B̂ik|U0, Gn) = P (B̂ik|U0, Gn,

k−1∑
m=i

Rm +∆′ ≤ 3n/λh)

+ P (

k−1∑
m=i

Rm +∆′ > 3n/λh|U0, Gn)

≤ P (

k−1∑
m=i

Rm +∆′ > 3n/λh|U0, Gn)

≤ P (

k−1∑
m=i

Rm > 5n/(2λh)|U0)

≤ P (

k−1∑
m=i

Rm > 5n/(2λh))/P (U0)

≤ A5e
−γ1n

for some positive constants A5, γ1 independent of n, k, i. The last inequality
follows from the fact that Ri’s are iid exponential random variables of mean

44 Authors Suppressed Due to Excessive Length

1/λh. Summing these terms, we have:

an =
∑

(i,k):−n≤i<0<k≤n

P (Bik|U0, Gn)

≤
∑

(i,k):−n≤i<0<k≤n

A5e
−α1n := ān,

which is bounded and moreover ān → 0 as n→∞.

Case 2: k > n or i < −n:

For 0 < ε < 1, let us define event W ε
ik to be:

W ε
ik = event that Dh(ζhk−1)−Dh(ζhi +∆′) ≥ (1− ε) rhλh (k − i− 1). (33)

Then we have

P (B̂ik|U0, Gn) ≤ P (B̂ik|U0, Gn,W
ε
ik) + P (W ε

ik
c|U0, Gn).

We first bound P (W ε
ik
c|U0, Gn):

P (W ε
ik
c|U0, Gn) ≤ P (W ε

ik
c|ζhk−1 − ζhi −∆′ >

k − i− 1

(1 + ε)λh
)

+ P (ζhk−1 − ζhi −∆′ ≤
k − i− 1

(1 + ε)λh
)

≤ P (W ε
ik
c|ζhk−1 − ζhi −∆′ >

k − i− 1

(1 + ε)λh
) + e−Ω(ε2(k−i−1))

≤ e−Ω(ε4(k−i−1)) + e−Ω(ε2(k−i−1))

≤ A6e
−γ2(k−i−1) (34)

for some positive constants A6, γ2 independent of n, k, i, where the second in-
equality follows from the Erlang tail bound (as ζhk−1 − ζhi is sum of IID expo-
nentials due to time-warping) and the third inequality follows from Proposition
4.

PoSAT: Proof-of-Work Availability and Unpredictability, without the Work 45

Meanwhile, we have

P (B̂ik|U0, Gn,W
ε
ik)

≤ P (Di(

k−1∑
m=i

Rm +∆′ + ζhi) ≥ (1− ε) rh
λh

(k − i− 1)|U0, Gn,W
ε
ik)

≤ P (Di(

k−1∑
m=i

Rm +∆′ + ζhi) ≥ (1− ε) rh
λh

(k − i− 1)

|U0, Gn,W
ε
ik,

k−1∑
m=i

Rm +∆′ ≤ (k − i− 1)
rh + φcλa

2φcλa

1

λh
)

+ P (

k−1∑
m=i

Rm +∆′ > (k − i− 1)
rh + φcλa

2φcλa

1

λh
|U0, Gn,W

ε
ik)

(a)

≤ P (

k−1∑
m=i

Rm +∆′ > (k − i− 1)
rh + φcλa

2φcλa

1

λh
|U0, Gn,W

ε
ik)

+ e
−θ∗c (k−i−1)

rh+φcλa
2φcλa

1
λh

+
(

(1−ε)
c

rh
λh

(k−i−1)−1
)
Λc(θ

∗
c)g

(
(k − i− 1)

rh + φcλa
2φcλa

1

λh

)
(b)
= P (

k−1∑
m=i

Rm +∆′ > (k − i− 1)
rh + φcλa

2φcλa

1

λh
|U0, Gn,W

ε
ik)

+ e
−θ∗c

k−i−1
λh

[
rh+φcλa
2φcλa

−(1−ε) rh
φcλa

]
e−Λc(θ

∗
c)g

(
(k − i− 1)

rh + φcλa
2φcλa

1

λh

)

where (a) follows from Lemma 6, (b) follows from Λc(θ
∗
c)

θ∗c
= 1

λaηc
= c

φcλa
. The

first term can be bounded as:

P (

k−1∑
m=i

Rm +∆′ > (k − i− 1)
rh + φcλa

2φcλa

1

λh
|U0, Gn,W

ε
ik)

= P (

k−1∑
m=i

Rm +∆′ > (k − i− 1)
rh + φcλa

2φcλa

1

λh
|U0,W

ε
ik)

≤ P (

k−1∑
m=i

Rm +∆′ > (k − i− 1)
rh + φcλa

2φcλa

1

λh
)/P (U0,W

ε
ik)

≤ A7e
−γ3(k−i−1)

for some positive constants A7, γ3 independent of n, k, i. The last inequality
follows from the fact that (rh + φcλa)/(2φcλa) > 1 and the Ri’s have mean
1/λh, while P (U0,W

ε
ik) is a event with high probability as we showed in (34).

46 Authors Suppressed Due to Excessive Length

Then we have

P (B̂ik|U0, Gn)

≤ A6e
−α2(k−i−1)

+ e
−θ∗c (k−i−1)

rh(1−ε)
λhφcλa

[
rh+φcλa
2(1−ε)rh

−1
]
e−Λc(θ

∗
c)g((k − i− 1)

rh + φcλa
2φcλa

1

λh
)

+ A7e
−γ3(k−i−1). (35)

Summing these terms, we have:

bn =
∑

(i,k):i<−n or k>n

P (B̂ik|U0, Gn)

≤
∑

(i,k):i<−n or k>n

[A6e
−α2(k−i−1)

+ e
−θ∗c (k−i−1)

rh(1−ε)
λhφcλa

[
rh+φcλa
2(1−ε)rh

−1
]
e−Λc(θ

∗
c)g

(
(k − i− 1)

rh + φcλa
2φcλa

1

λh

)
+ A7e

−γ3(k−i−1)]

:= b̄n

Here, from (23), g(.)→ λa
−θ?c

as n→∞. Therefore, b̄n is bounded and moreover

b̄n → 0 as n→∞ when we set ε to be small enough such that rh+φcλa
2(1−ε)rh < 1.

Substituting these bounds in (30) we finally get:

P (E0|U0) > [1− (ān + b̄n)]P (Gn|U0) (36)

By setting n sufficiently large such that ān and b̄n are sufficiently small, we
conclude that P (Ê0) > 0.

G.3 Proof of Lemma 8

We divide the proof in to two steps. In the first step, we prove for ε = 1/2. Recall
that we have defined event B̂ik as:

B̂ik = event that Di(
∑k−1
m=iRm +∆′ + ζhi) ≥ Dh(ζhk−1)−Dh(ζhi +∆′).

And by Lemma 14, 15, 12, we have

F̂ cj = F cj ∪ V cj =

 ⋃
(i,k):i<j<k

B̂ik

 ∪ V cj . (37)

For t′ > max

{(
2λh
1−η

)2 (
c−1
φc−1

)2
,
[
(c− 1)

(
∆′ + 1

λmin

)]2}
, we have

√
t′

2λh
>

λh
λa

(
c−1
φc−1

)
and
√
t′ > (c− 1)

(
∆′ + 1

λmin

)
.

PoSAT: Proof-of-Work Availability and Unpredictability, without the Work 47

Divide [s′, s′ + t′] into
√
t′ sub-intervals of length

√
t′, so that the r th sub-

interval is:
Jr := [s′ + (r − 1)

√
t′, s′ + r

√
t′].

Now look at the first, fourth, seventh, etc sub-intervals, i.e. all the r = 1 mod 3
sub-intervals. Introduce the event that in the `-th 1 mod 3th sub-interval, an
adversary tree that is rooted at a honest block arriving in that sub-interval or
in the previous (0 mod 3) sub-interval catches up with a honest block in that
sub-interval or in the next (2 mod 3) sub-interval. Formally,

C` =
⋂

j:ζhj ∈J3`+1

U cj ∪

 ⋃
(i,k):ζhj −

√
t′<ζhi <ζ

h
j ,ζ

h
j <ζ

h
k+∆

′<ζhj +
√
t′

B̂ik

 .

We have
P (C`) ≤ P (no arrival in J3`+1) + 1− p < 1 (38)

for large enough t′, where p is a uniform lower bound such that P (F̂j) ≥ p for
all j. Also, we define the following event:

Ĉ` = event that the honest fictitious tree grows by c− 1 levels in sub-interval J3`+2

Observe that because of randSource being updated at each epoch beginning,
for distinct `, the events C`

⋂
Ĉ` are independent. Using Poisson tail bounds,

for
√
t′ > (c− 1)

(
∆′ + 1

λmin

)
, we have P (Ĉ`) ≥ 1− e−c2

√
t′ .

Introduce the atypical events:

B =
⋃

(i,k):ζhi ∈[s′,s′+t′] or ζhk+∆′∈[s′,s′+t′],i<k,ζhk+∆′−ζhi >
√
t′

B̂ik,

and
B̃ =

⋃
(i,k):ζhi <s

′,s′+t′<ζhk+∆
′

B̂ik.

The events B and B̃ are superset of the events that an adversary tree catches
up with an honest block far ahead. Then we have

P (Bstatics′,s′+t′) ≤ P (
⋂

j:ζhj ∈[s′,s′+t′]

U cj) + P (B) + P (B̃) + P (

√
t′/3⋂
`=0

C`)

≤ P (
⋂

j:ζhj ∈[s′,s′+t′]

U cj) + P (B) + P (B̃) + P (

√
t′/3⋃
`=0

Ĉc`) + P (

√
t′/3⋂
`=0

C` ∩ Ĉ`)

≤ P (
⋂

j:ζhj ∈[s′,s′+t′]

U cj) + P (B) + P (B̃) +

√
t′/3∑
`=0

P (Ĉc`) + (P (C` ∩ Ĉ`))
√
t′/3

≤ e−c1t
′
+ P (B) + P (B̃) + e−c2

√
t′ + (P (C`))

√
t′
3 (39)

48 Authors Suppressed Due to Excessive Length

for some positive constants c1, c2 when t′ is large. Next we will bound the atypical
events B and B̃. Consider the following events

D1 = {#{i : ζhi ∈ (s′ −
√
t′ −∆′, s′ + t′ +

√
t′ +∆)} > 2λht

′}

D2 = {∃i, k : ζhi ∈ (s′, s′ + t′), (k − i) <
√
t′

2λh
, ζhk − ζhi +∆′ >

√
t′}

D3 = {∃i, k : ζhk +∆ ∈ (s′, s′ + t′), (k − i) <
√
t′

2λh
, ζhk − ζhi +∆′ >

√
t}

In words, D1 is the event of atypically many honest arrivals in (s′−
√
t′−∆′, s′+

t′+
√
t′+∆′) whileD2 andD3 are the events that there exists an interval of length√

t′ with at least one endpoint inside (s′, s′ + t′) with atypically small number
of arrivals. Since, by time-warping, the number of honest arrivals in (s′, s′ + t′)
(in the local clock of the static system) is Poisson with parameter λht′, we have
from the memoryless property of the Poisson process that P (D1) ≤ e−c0t

′
for

some constant c0 = c0(λa, λh) > 0 when t′ is large. On the other hand, using
the memoryless property and a union bound, and decreasing c0 if needed, we
have that P (D2) ≤ e−c0

√
t′ . Similarly, using time reversal, P (D3) ≤ e−c0

√
t′ .

Therefore, again using the memoryless property of the Poisson process,

P (B) ≤ P (D1 ∪D2 ∪D3) + P (B ∩Dc
1 ∩Dc

2 ∩Dc
3)

≤ e−c0t
′
+ 2e−c0

√
t′ +

2λht
′∑

i=1

∑
k:k−i>

√
t′/2λh

P (B̂ik) (40)

≤ e−c3
√
t′ , (41)

for large t′, where c3 > 0 are constants that may depend on λa, λh and the last
inequality is due to (27). We next claim that there exists a constant α > 0 such
that, for all t′ large,

P (B̃) ≤ e−c6t
′
. (42)

Consider the following event

D4 = {∃i, k : (k − i) < t′

2λh
, ζhk − ζhi +∆′ > t′}.

Using Poisson tail bounds, we can show that P (D4) ≤ e−c4t′ . Now, we have

P (B̃) ≤ P (D4) + P (B̃ ∩Dc
4)

≤ e−c4t
′
+

∑
i,k:k−i>t′/2λh

∫ s′

0

P (ζhi ∈ dθ)P (B̂ik, ζ
h
k − ζhi +∆′ > s′ + t′ − θ)

≤ e−c4t
′
+
∑
i

∫ s′

0

P (ζhi ∈ dθ)
∑

k:k−i>t′/2λh

P (B̂ik)1/2P (ζhk − ζhi +∆′ > s′ + t′ − θ)1/2.

(43)

PoSAT: Proof-of-Work Availability and Unpredictability, without the Work 49

The tails of the Poisson distribution yield the existence of constants c′, c′′ > 0
so that

P (ζhk − ζhi +∆′ > s′ + t′ − θ) (44)

≤
{

1, (k − i) > c′(s′ + t′ − θ −∆′)
e−c

′′(s′+t′−θ−∆′), (k − i) ≤ c′(s′ + t′ − θ −∆′). (45)

(27) and (44) yield that, for large enough t′, there exists a constant c5 > 0 so
that ∑
k:k−i>t′/2λh

P (B̂i,k)1/2P (ζhk −ζhi > s′+t′−θ−∆′)1/2 ≤ e−2c5(s
′+t′−θ−∆′). (46)

Substituting this bound in (43) and using that
∑
i P (ζhi ∈ dθ) = dθ gives

P (B̃) ≤ e−c4t
′
+
∑
i

∫ s′

0

P (ζhi ∈ dθ)e−2c5(s
′+t′−θ−∆′)

≤ e−c4t
′
+

∫ s′

0

e−2c5(s
′+t′−θ−∆′)dθ ≤ e−c4t

′
+

1

2c5
e−2c5(t

′−∆′)

≤ e−c6t
′
, (47)

for t′ large and c6 = min(c4, c5), proving (42).
Combining (41), (47) and (39) concludes the proof of step 1.
In step two, we prove for any ε > 0 by recursively applying the bootstrapping

procedure in step 1. Assume the following statement is true: for any θ ≥ m there
exist constants b̄θ, Āθ so that for all s′, t′ ≥ 0,

q̃[s′, s′ + t′] ≤ Āθ exp(−b̄θt′1/θ). (48)

By step 1, it holds for m = 2. Also, for specific values of m that we will consider,
we will have t′

m
2m−1 >

√
t′.

Divide [s′, s′ + t′] into t′
m−1
2m−1 sub-intervals of length t′

m
2m−1 , so that the r th

sub-interval is:
Jr := [s′ + (r − 1)t′

m
2m−1 , s′ + rt′

m
2m−1].

Now look at the first, fourth, seventh, etc sub-intervals, i.e. all the r = 1
mod 3 sub-intervals. Introduce the event that in the `-th 1 mod 3th sub-interval,
an adversary tree that is rooted at a honest block arriving in that sub-interval
or in the previous (0 mod 3) sub-interval catches up with a honest block in that
sub-interval or in the next (2 mod 3) sub-interval. Formally,

C` =
⋂

j:ζhj ∈J3`+1

U cj ∪

 ⋃
(i,k):ζhj −t

′ m
2m−1<ζhi <ζ

h
j ,ζ

h
j <ζ

h
k+∆

′<ζhj +t
′ m
2m−1

B̂ik

 .

By (48), we have
P (C`) ≤ Am exp(−āmt′

1
2m−1). (49)

50 Authors Suppressed Due to Excessive Length

Also, we define the following event:

Ĉ` = event that the honest fictitious tree grows by c− 1 levels in sub-interval J3`+2

Note that for distinct `, the events C`
⋂
Ĉ` are independent. Also, from

Lemma 10, assuming t′
m

2m−1 >
√
t′ > (c − 1)

(
∆′ + 1

λmin

)
, we have P (Ĉ`) ≥

1− e−c2t
′ m
2m−1 for some positive constant c2.

Introduce the atypical events:

B =
⋃

(i,k):ζhi ∈[s′,s′+t′] or ζhk+∆′∈[s′,s′+t′],i<k,ζhk+∆′−ζhi >t
′ m
2m−1

B̂ik,

and
B̃ =

⋃
(i,k):ζhi <s

′,s′+t′<ζhk+∆
′

B̂ik.

The events B and B̃ are the events that an adversary tree catches up with an
honest block far ahead. Following the calculations in step 1, we have

P (B) ≤ e−c3t
′ m
2m−1 (50)

P (B̃) ≤ e−c6t
′
, (51)

for large t′, where c1 and c5 are some positive constant.
Then we have

q̃[s′, s′ + t′] ≤ P (
⋂

j:ζhj ∈[s′,s′+t′]

U cj) + P (B) + P (B̃) + P (

t
′ m−1
2m−1 /3⋂
`=0

C`)

≤ P (
⋂

j:ζhj ∈[s′,s′+t′]

U cj) + P (B) + P (B̃) + P (

t
′ m−1
2m−1 /3⋃
`=0

Ĉc`) + P (

t
′ m−1
2m−1 /3⋂
`=0

C` ∩ Ĉ`)

≤ P (
⋂

j:ζhj ∈[s,s+t]

U cj) + P (B) + P (B̃) +

t
′ m−1
2m−1 /3∑
`=0

P (Ĉc`) + (P (C` ∩ Ĉ`))t
′ m−1
2m−1 /3

≤ e−c1t
′
+ e−c3t

′ m
2m−1

+ e−c6t
′
+ e−c2t

′ m
2m−1

+ (Am exp(−āmt′1/(2m−1)))t
′ m−1
2m−1 /3

≤ Ā′m exp(−b̄′mt′
m

2m−1)

for large t′, where A′m and b′m are some positive constant.
So we know the statement in (48) holds for all θ ≥ 2m−1

m . Start with m1 = 2,
we have a recursion equation mk = 2mk−1−1

mk−1
and we know (48) holds for all

θ ≥ mk. It is not hard to see that mk = k+1
k and thus limk→∞mk = 1. Now

observe that for mk = k+1
k , we have t′

mk
2mk−1 >

√
t′ for k > 1.

PoSAT: Proof-of-Work Availability and Unpredictability, without the Work 51

So, for some constant āθ which is a function of ∆′, we can rewrite (48) as

q̃[α(s), α(s+ t)] ≤ Ā′m exp(−āθt1/θ)

which concludes the lemma.

H Proof of Lemma 9

Let Uj be the event in ss1 that the j−th honest block bj is a loner, i.e.,

Uj = {τhj−1 < τhj −∆}
⋂
{τhj+1 > τhj +∆}

Let F̂j = Uj
⋂
Fj be the event that bj is a Nakamoto block. We define the

following “potential" catch up event in ss1:

Âik = {Di(α(τhk +∆)) ≥ Dh(α(τhk−1))−Dh(α(τhi +∆))}, (52)

which is the event that the adversary launches a private attack starting from
honest block bi and catches up the fictitious honest chain right before honest
block bk is proposed.

Next, define the following events

V ss1j = {α(τhj−1) < α(τhj)− λmax

λh
∆}
⋂
{α(τhj+1) > α(τhj) +

λmax

λh
∆} (53)

B̂ss1ik = {Di(α(τhk) +
λmax

λh
∆) ≥ Dh(α(τhk−1))−Dh(α(τhi) +

λmax

λh
∆)} (54)

Lemma 14. For any pair of i, k,

Âik ⊆ B̂ss1ik .

Proof. Using equation 8, we have

α(τhk +∆) =

∫ τhk+∆

0

λch(u)

λh
du =

∫ τhk

0

λch(u)

λh
du+

∫ τhk+∆

τhk

λch(u)

λh
du

≤ α(τhk) +
λmax

λh
∆

Similarly, α(τhi +∆) ≤ α(τhi) + λmax

λh
∆. Because Dh(.) and Di(.) are increasing

functions over their domain, we have

Di(α(τhk +∆)) ≤ Di(α(τhk) +
λmax

λh
∆) and

Dh(α(τhi +∆)) ≤ Dh(α(τhi) +
λmax

λh
∆)

52 Authors Suppressed Due to Excessive Length

Lemma 15. For all j,
V ss1j ⊆ Uj .

Proof. This can be proved using the fact that
∫ τhj−1+∆

τhj−1

λch(u)
λh

du ≤ λmax

λh
∆ and∫ τhj +∆

τhj

λch(u)
λh

du ≤ λmax

λh
∆.

By time-warping, Rm is an IID exponential random variable with rate λh.
Let ζhj = α(τhj), that is, ζhj is the time of mining of j−th honest block in the
local clock of static system ss1. Similarly, we define ζaj = α(τaj) for the j−th
adversarial block. Then, we can rewrite the event B̂ik as:

B̂ss1ik =

{
Di(ζ

h
k +

λmax

λh
∆) ≥ Dh(ζhk−1)−Dh(ζhi +

λmax

λh
∆)

}
.

Lemma 16. In the static system ss1, for each j

P (F̂ cj) = P (F cj ∪ U cj) ≤ P

 ⋃
(i,k):0≤i<j<k

B̂ss1ik

 ∪ (V ss1j)c

 . (55)

This can be proved in a similar way as Lemma 12 and using Lemma 14, 15.
Furthermore, defining Xd, d > 0, as the time it takes in the local clock of static
system ss1 for Dh to reach depth d after reaching depth d− 1, we have

Proposition 7. Let Yd, d ≥ 1, be i.i.d random variables, exponentially dis-
tributed with rate λh. Then, each random variable Xd is less than ∆′+Yd, where
∆′ = λmax

λh
∆.

Proof. Let hi be the first block that comes at some depth d−1 within Th. Then,
in the local clock of static system, every honest block that arrives within interval
[α(τhi), α(τhi + ∆)] will be mapped to the same depth as hi, i.e., d − 1. Hence,
Th will reach depth d only when an honest block arrives after time α(τhi + ∆).
Now, due to time warping, in the local clock of static system ss1, we know that
the difference between α(τhi + ∆) and the arrival time of the first honest block
after α(τhi +∆) is exponentially distributed with rate λh due to the memoryless
property of the exponential distribution. This implies that for each depth d,
Xd = α(τhi +∆)−α(τhi) +Yd =

∫ τhi +∆
τhi

λch(u)
λh

du+Yd ≤ ∆′+Yd for some random
variable Yd such that Yd, d ≥ 1, are IID and exponentially distributed with rate
λh.

Thus, for ∆′ = λmax

λh
∆, Proposition 7 implies that both Proposition 4 and

Proposition 6 are satisfied for the static system ss1. Therefore, for ∆′ = λmax

λh
∆,

a similar result holds for the event B̂ss1ik as in Lemma 13. Additionally, Lemma 6
holds for ss1. Then, substituting ∆′ = λmax

λh
∆ and using Lemma 16, we have

both Lemma 7 and Lemma 8 satisfy for the static system ss1. For a time t > 0
in the local clock of the dynamic available system dyn2, we have α(t) ≥ λmin

λh
t.

Then, using Lemma 3, Lemma 4, Lemma 5, we conclude the proof.

	PoSAT: Proof-of-Work Availability and Unpredictability, without the Work

